
SPINE= .37”

Developing Silverlight®
line of BuSineSS ApplicAtionS

D
evelo

pin
g Silverlig

h
t

® lin
e o

f B
u

Sin
eSS A

pplicAtio
n

S
For more information explore:
msdn.microsoft.com/practices

Software Architecture and
Software Development

patterns & practices
 Proven practices for predictable results

Save time and reduce risk on your
software development projects by
incorporating patterns & practices,
Microsoft’s applied engineering
guidance that includes both production
quality source code and documentation.

The guidance is designed to help
software development teams:

Make critical design and technology
selection decisions by highlighting
the appropriate solution architectures,
technologies, and Microsoft products
for common scenarios

Understand the most important
concepts needed for success by
explaining the relevant patterns and
prescribing the important practices

Get started with a proven code base
by providing thoroughly tested
software and source that embodies
Microsoft’s recommendations

The patterns & practices team consists
of experienced architects, developers,
writers, and testers. We work openly
with the developer community and
industry experts, on every project, to
ensure that some of the best minds in
the industry have contributed to and
reviewed the guidance as it is being
developed.

We also love our role as the bridge
between the real world needs of our
customers and the wide range of
products and technologies that
Microsoft provides.

If you need to solve enterprise software development challenges such as
validation, caching, logging, and exception handling in your Silverlight line-of-
business applications, the Silverlight Integration Pack for Microsoft ® Enterprise
Library 5.0 can help. It provides guidance and reusable Silverlight components
designed to encapsulate recommended practices that facilitate consistency,
ease of use, integration, and extensibility. It also helps you port your existing
line-of-business applications that already use Enterprise Library to Silverlight.
Note that the integration pack does not cover Silverlight for Windows Phone.

This guide will help you make the most of the Silverlight Integration Pack for
Enterprise Library 5.0. It is focused on the desktop Silverlight platform and
comes with an accompanying reference implementation to demonstrate
how you can leverage Enterprise Library in a Silverlight application. It covers
the Validation, Caching, Logging, Exception Handling, and Policy Injection
Application Blocks.

Developing An
ADvAnceD WinDoWS®
phone 7.5 App thAt
connectS to the clouD

David Britch
Francis Cheung
Adam Kinney
Rohit Sharma

Each chapter contains an overview of an application block, various techniques
for applying the block, and a description of how that block was applied in
the reference implementation so you can begin realizing the benefits of the
Silverlight Integration Pack for Enterprise Library 5.0.

Developing an Advanced

Windows® Phone 7.5 App that

Connects to the Cloud

Developing an Advanced
Windows® Phone 7.5 App that
Connects to the Cloud

David Britch
Francis Cheung
Adam Kinney
Rohit Sharma

978-1-62114-015-3

This document is provided "as-is." Information and views expressed in this
document, including URL and other Internet Web site references, may
change without notice.

Some examples depicted herein are provided for illustration only and are
fictitious. No real association or connection is intended or should be
inferred.

This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use
this document for your internal, reference purposes.

© 2012 Microsoft. All rights reserved.

Microsoft, Bing, Expression Blend, MSDN, Silverlight, Visual C#, Visual
Studio, Windows, Windows Azure, and XNA are trademarks of the
Microsoft group of companies. All other trademarks are property of their
respective owners.

Contents

Contents v

Foreword xi

Acknowledgements xiii

Acknowledgements on This 2nd Edition xv

Preface xvii
Who This Book Is For xvii
Why This Book Is Pertinent Now xviii
How This Book Is Structured xviii
The Example Application xix
What You Need to Use the Code xix
Who’s Who xx
Where to Go for More Information xxi

1 The Tailspin Scenario 1
The Tailspin Company 1

Tailspin’s Strategy 1
Tailspin’s Goals and Concerns 2

The Surveys Application Architecture 4
The Actors 5

Tailspin - The ISV 5
Fabrikam and Adatum - The Subscribers 5
The Surveyors - Windows Phone Users 5

The Business Model 6
The Application Components 6

vi

2 Building the Mobile Client 9
Overview of the Mobile Client Application 9

Goals and Requirements 9
Usability Goals 10
Non-Functional Goals 11
Development Process Goals 12

The Components of the Mobile Client Application 13
The Structure of the Tailspin Surveys Client Application 14

Dependency Injection 15
The TailSpin Solution 16
The Contents of the TailSpin.PhoneClient Project 17
The Contents of the TailSpin.PhoneClient.Adapters Project 17
The Contents of the TailSpin.PhoneServices Project 18

The Design of the User Interface 18
Page Navigation 18
User Interface Description 23
User Interface Elements 23

The Pivot Control 23
Styling and Control Templates 24
Context Menus 24

Using the Model-View-ViewModel Pattern 25
The Premise 25

Overview of MVVM 25
Benefits of MVVM 27

Connecting the View and the View Model 28
Inside the Implementation 28

Testing the Application 30
Inside the Implementation 30

Displaying Data 31
Inside the Implementation 32

Commands 42
Inside the Implementation 42

Handling Navigation Requests 44
Inside the Implementation 45

User Interface Notifications 49
Informational/Warning Notifications 50
Error Notifications 50
Inside the Implementation 50

Accessing Services 52
Conclusion 52
Questions 53
More Information 54

 vii

3 Using Services on the Phone 55
The Model Classes 55
Using Isolated Storage on the Phone 56

Overview of the Solution 57
Security 58
Storage Format 58

Inside the Implementation 59
Application Settings 59
Survey Data 63

Handling Activation and Deactivation 67
Overview of the Solution 68
Inside the Implementation 69

Reactivation and the Pivot Control 77
Handling Asynchronous Interactions 78

Using Reactive Extensions 78
Inside the Implementation 79

Synchronizing Data between the Phone and the Cloud 83
Overview of the Solution 84

Automatic Synchronization 84
Manual Synchronization 85
Limitations of the Current Approach 86

Inside the Implementation 86
Automatic Synchronization 87
Manual Synchronization 93

Using Live Tiles on the Phone 97
Overview of the Solution 98
Inside the Implementation 98

The Application Tile 99
Secondary Tiles 101

Using Location Services on the Phone 103
Overview of the Solution 103
Inside the Implementation 104

Acquiring Image and Audio Data on the Phone 106
Overview of the Solution 106

Capturing Image Data 106
Recording Audio Data 107

Inside the Implementation 107
Capturing Image Data 107
Using XNA Interop to Record Audio 112

Logging Errors and Diagnostic Information on the Phone 115
Conclusion 116
Questions 116
More Information 117

viii

4 Connecting with Services 119
Authenticating with the Surveys Service 119

Goals and Requirements 120
Overview of the Solution 120

A Future Claims-Based Approach 122
Inside the Implementation 123

Notifying the Mobile Client of New Surveys 126
Overview of the Solution 127
Inside the Implementation 129

Registering for Notifications 129
Sending Notifications 136
Notification Payloads 140

Accessing Data in the Cloud 141
Goals and Requirements 141
Overview of the Solution 142

Exposing the Data in the Cloud 142
Data Formats 142
Consuming the Data 142
Using SSL 143

Inside the Implementation 143
Creating a WCF REST Service in the Cloud 143
Consuming the Data in the Windows Phone
Client Application 146

Filtering Data 150
Overview of the Solution 150

Registering User Preferences 151
Identifying Which Devices to Notify 153
Selecting Surveys to Synchronize 154

Inside the Implementation 155
Storing Filter Data 155
Building a List of Devices to Receive Notifications 157
Building a List of Surveys to Synchronize with the
Mobile Client 158

Conclusion 159
Questions 159
More Information 160

Appendix A: Unit Testing Windows Phone
Applications 161

Windows Phone 7.1 SDK Abstractions 162
Mock Implementations 163

Testing Asynchronous Functionality 164
Using Delegates to Specify Behavior 165

Running Unit Tests 166

 ix

Appendix B: Prism Library for Windows Phone 167
About Prism for Windows Phone 168
Contents of Prism for Windows Phone Library 168

Microsoft.Practices.Prism Namespace 169
Microsoft.Practices.Prism.Commands Namespace 169
Microsoft.Practices.Prism.Events Namespace 170
Microsoft.Practices.Prism.ViewModel Namespace 170
Microsoft.Practices.Prism.Interactivity Namespace 171
Microsoft.Practices.Prism.Interactivity.InteractionRequest
Namespace 172

Answers to Questions 173
Chapter 2, Building the Mobile Client 173
Chapter 3, Using Services on the Phone 175
Chapter 4, Connecting with Services 178

Index 181

 xi

Foreword

The release of Windows® Phone 7, and the Windows Phone 7.0 SDK, provided great opportunities
for building highly interactive and immersive applications. However, with the release of Windows
Phone 7.5, and the Windows Phone 7.1 SDK, it is now possible to build many classes of applications
that it was not previously possible to build. This release expands upon the capabilities of the Windows
Phone platform by including many new features such as multitasking, local database support, Live Tile
enhancements, deep linking into applications from notifications and Live Tiles, and an encrypted
credentials store, to name but a few. These features, and many more, enable the building of even
richer applications.

This guide will show you how to design and implement a compelling end-to-end application using
the Windows Phone 7.1 SDK. Testability is a major focus of the guide, since as Windows Phone ap-
plications grow in complexity and size they can become difficult to test and maintain. The Model-View-
ViewModel (MVVM) pattern provides a clean separation of concerns that not only makes applications
easier to test and maintain, but also provides code reuse opportunities, and enables the developer-
designer workflow. Windows Phone applications implemented using the Microsoft® Silverlight®
browser plug-in are naturally suited to the MVVM pattern, which takes advantage of some of the
specific capabilities of Silverlight, such as data binding, commands, and behaviors. The application
presented in this guide combines a number of patterns in order to increase the testability of the ap-
plication.

The guide also highlights a number of essential tools that can greatly increase developer produc-
tivity when building an advanced application. The Silverlight Unit Test Framework for Windows Phone
and Silverlight 4 enables you to run unit tests on both the phone emulator and on real devices. The
Silverlight for Windows Phone Toolkit contains extra controls that enable you to create even better
applications using the Windows Phone 7.1 SDK. In the toolkit you’ll find user interface controls like
those found throughout Windows Phone, with components like toggle switches, page transitions,
picker controls and more. Finally, the Prism Library for Windows Phone simplifies tasks such as bind-
ing commands to interface objects, linking methods to application bar buttons, notifying changes to
object properties, and detecting changes to text-based controls in the view.

After reading this guide, you should know how to build your own advanced, loosely coupled,
testable application using the Windows Phone 7.1 SDK.

Happy Windows Phone coding!

Sincerely,
Jeff Wilcox
Senior Software Development Lead, Windows Phone Team

xii

For the majority of people in the world, their mobile phone will be their first computer. Here at
Microsoft, we have recognized this for a long time. We entered the mobile market back in the 1990s
and produced a reasonable offering, Windows® Mobile, which provided developers with a rich and
compelling platform on which they could build a multitude of solutions.

In 2007 we recognized that our offering was no longer competitive and that to remain relevant
we would have to reboot Windows Mobile in a drastic way. Our prime directive in this reboot was to
deliver a fresh, compelling end-user experience targeted at making it extremely easy for people to
perform the types of tasks we know people want to perform on their phones.

While we knew that we needed a drastic reboot of our focus and our end-user story on the
phone, we didn’t want to discard the things we knew we did well—specifically, our developer plat-
form. Microsoft is a developer-focused company with many decades of experience delivering the re-
quired platforms and tools to developers. In building the application platform for Windows Phone we
took advantage of the best developer tools and platform components that Microsoft had to offer.
The result was a platform that’s easy to use, and which enables developers to deliver compelling ap-
plications and game experiences that naturally extend the experiences of the phone itself.

However, tools and platforms alone are often not enough. For quite some time, the patterns &
practices team has focused on providing detailed guidance about how to best use our tools and
platforms. The first edition of this guide did an excellent job of teaching developers how to apply their
skills to build a comprehensive end-to-end solution for Windows Phone.

Windows Phone 7.5 represents a very large expansion of the Windows Phone development plat-
form. Therefore, we knew that a corresponding update to the patterns & practices guide was in order.
We think this guide will provide you with everything you need to know to develop a wide range of
compelling solutions that use the Windows Phone platform.

We’d also like your feedback. Let us know what you think of the Windows Phone platform at
http://wpdev.uservoice.com.

Sincerely,
Larry Lieberman
Senior Product Manager, Windows Phone Application Platform

Acknowledgements

When I joined Microsoft® patterns & practices in May 2004, my projects were all related to client de-
velopment: smart clients and web clients, mostly. At that time, we considered it natural to extend our
guidance to mobile clients. The result of that was the Mobile Client Software Factory, which was re-
leased in July 2006.

As I was preparing for this project, I looked back at the work we did at that time, and I was surprised
in two very different and opposite ways. First, the list of technical challenges to cover was surprisingly
similar. Both mentioned things like UI design and dealing with networks. Second, modern devices are
light years ahead of what we had at that time: much more memory is available, graphics processor units
(GPUs) now exist, there are more sophisticated sensors and, of course, the cloud is a much more power-
ful back end. A lot has remained the same, and a lot has changed.

This book covers two extremes of the Microsoft Windows® platforms: the massive computing re-
sources of Windows Azure™ and the personal, tailored experience of Windows Phone 7. As we were
developing this content, I was reminded of the richness of the Microsoft platform, and the opportunities
it offers to developers today. Ideas that were merely seeds in our imagination a decade ago or that were
available to only large corporations with huge resources, are now accessible to everyone with a PC. I feel
privileged to have contributed, even a little bit, toward making this happen.

This guide follows the same scenario-based approach we used in our previous three guides on
Windows Azure development and claims-based identity. We created a fictitious, yet realistic sample that
is used as a case study throughout the chapters. The sample and the guide are complementary. You will
find that the guide covers tradeoffs and design considerations that go beyond what is implemented in
code. Often, there are many ways to solve one particular technical challenge. We tried to surface those
tradeoffs and the thinking behind our decisions to equip you with the tools to make your own decisions
in your own environments.

In the code, you will find that we have chosen to solve many problems in ways that are new and
perhaps unexpected. An example of this is the extensive use of the Reactive Extensions for .NET Frame-
work for all the asynchronous network calls. We chose to do this because it is our mission to empower
you with better tools and frameworks.

I want to start by thanking the following subject matter experts and main contributors to this
guide: Dominic Betts, Federico Boerr, Bob Brumfield, Jose Gallardo Salazar, Scott Densmore, and Alex
Homer. Dominic is a veteran of many patterns & practices guides. As I wrote before, Dominic has this
unique ability to explain complex topics in simple terms without losing rigor. Federico has been a
member of our team since the very first guide we wrote for Windows Azure and has both the technical
expertise and the gift of empathy, an essential attribute required to write guidance. Bob is an outstand-
ing developer who brought with him an incredible wealth of experience and knowledge about
Microsoft Silverlight® browser plug-in development, the main framework used throughout the guide
to build applications on the phone. Jose was one of the original developers of the Mobile Client Soft-
ware Factory, and is a very experienced mobile developer who understands what developing guidance

 xiii

xiv

is all about. I feel very privileged to have worked with Scott every day—his knowledge spans an amaz-
ing spectrum, from devices to Windows Azure™ technology platform, which is exactly what we
needed for this guide. For this project, he also brought the unique perspective of an iPhone developer.

I share two passions with Alex Homer: software and railways. We were very lucky to count on Alex’s
experience as a technical author; he contributed to the solid structure and flow of this guide.

Many thanks also to the project’s development and test teams for providing a good balance of
technically sound, focused code: Federico Boerr (Southworks SRL), Bob Brumfield (Microsoft Corpora-
tion), Scott Densmore (Microsoft Corporation), Chris Keyser (Microsoft Corporation), Jose Gallardo
Salazar (Clarius Consulting), Masashi Narumoto (Microsoft Corporation), Lavanya Selvaraj (Infosys
Technologies Ltd.), Mani Krishnaswami (Infosys Technologies Ltd.), and Ravindra Varman (Infosys Tech-
nologies Ltd.).

The written content in this guide is the result of our great technical writing and editing team. I want
to thank Dominic Betts (Content Master Ltd.), Tina Burden (TinaTech Inc.), RoAnn Corbisier (Microsoft
Corporation), Alex Homer (Microsoft Corporation), and Nancy Michell (Content Master Ltd.).

The visual design concept used for this guide was originally developed by Roberta Leibovitz and
Colin Campbell (Modeled Computation LLC) for A Guide to Claims-Based Identity and Access Control.
Based on the excellent responses we received, we decided to reuse this design in our most recent titles,
including this one. The book design was created by John Hubbard (eson). The cartoon faces were drawn
by the award-winning Seattle-based cartoonist Ellen Forney. The technical illustrations were adapted
from my Tablet PC mockups by Katie Niemer (Modeled Computation LLC).

This guide, just like all our guidance content, was broadly reviewed, commented on, scrutinized, and
criticized by a large number of customers, partners, and colleagues. Once again, we were extremely
fortunate to tap into the collective intellectual power of a very diverse and skillful group of readers.

I also want to thank all of the people who volunteered their time and expertise on our early content
and drafts. Among them, I want to mention the exceptional contributions of Shy Cohen, Istvan Cseri,
Markus Eilers, Jonas Follesø, David Golds, David Hill, Yochay Kiriaty, Joel Liefke, Steve Marx, Erik Meijer,
Miguel Angel Ramos Barroso, Jaime Rodriguez, Soumitra Sengupta, Ben Schierman, Erwin van der Valk,
and Matias Woloski. A very special thanks is in order for the entire patterns & practices Prism team:
Larry Brader (Microsoft Corporation), Bob Brumfield (Microsoft Corporation), Geoff Cox (Southworks
SRL), Nelly Delgado (Microsoft Corporation), David Hill (Microsoft Corporation), Meenakshi Krish-
namoorthi (Infosys Technologies Ltd.), Brian Noyes (iDesign), Diego Poza (Southworks SRL), Michael
Puleio (Microsoft Corporation), Karl Schifflett (Microsoft Corporation), Fernando Simonazzi (Clarius
Consulting), Rathi Velusamy (Infosys Technologies Ltd.), and Blaine Wastell (Microsoft Corporation).

Last but not least, I’d like to thank Charlie Kindel, the executive sponsor for this project.
I hope you find this guide useful!

Eugenio Pace
Senior Program Manager – patterns & practices
Microsoft Corporation
Redmond, WA, October 2010

 xv

Acknowledgements on This 2nd Edition

Eugenio Pace
Principal Program Manager Lead – patterns & practices
Microsoft Corporation
Redmond, WA, November 2011

Here I am, almost exactly one year later, working on updating and improving this guide for building
great Windows Phone applications.

The new Windows Phone includes some really great capabilities that we believe will help you
develop much more powerful applications: a relational database, secure storage, and background
agents, among many others.

The spirit of this guide has not changed, but if you read the previous release you will notice two
very obvious differences: the title and the number of pages. We decided to change the title to better
reflect the scope and focus of the content. This book contains guidance for building advanced apps. If
your application is really simple, you might not need all the abstractions we have included here. But if
high-quality software is your goal, this is definitely for you.

The guide is much slimmer now because we decided to remove all the introductory and general
content on the Windows Phone platform and its capabilities. All that content was fine a year ago
when product documentation was still being written and not widely available, but today there’s
plenty of content covering all that on MSDN. There is now excellent content available from both
Microsoft and the extended developer community.

The result is a more focused guide that explores the design considerations of a relatively complex
Windows Phone application interacting with a Windows Azure back end.

As before, we’ve reached out to the experts in the community to help us review, prioritize, and
refine the content. In addition to the original advisors, I’d like to thank Amrita Bhandari, David Britch,
Bob Brumfield, Francis Cheung, Scott Densmore, Jonas Follesø, Alex Golesh, Adam Kinney, Jesse Lib-
erty, Rohit Sharma, Karl Shifflett, and Shawn Wildermuth. A very special thanks for Larry Lieberman
and Jeff Wilcox from the Windows Phone team for their continued support.

xvii

Preface

Windows® Phone provides an exciting opportunity for companies and developers to build applica-
tions that travel with users, are interactive and attractive, and are available whenever and wherever
users want to work with them. The latest release of Windows Phone furthers this opportunity by
enabling you to build many classes of applications that were not previously possible.

By combining Windows Phone applications with on-premises services and applications, or remote
services and applications that run in the cloud (such as those using the Windows Azure™ technology
platform), developers can create highly scalable, reliable, and powerful applications that extend the
functionality beyond the traditional desktop or laptop, and into a truly portable and much more ac-
cessible environment.

This book describes a scenario concerning a fictitious company named Tailspin that has decided to
embrace Windows Phone as a client device for their existing cloud-based application. Their Windows
Azure-based application named Surveys is described in detail in a previous book in this series, Develop-
ing Applications for the Cloud on the Microsoft Windows Azure Platform 2nd Edition. For more information
about that book, see the page by the same name on MSDN®.

In addition to describing the client application, its integration with the remote services, and the
decisions made during its design and implementation, this book discusses related factors, such as the
design patterns used, and the ways that the application could be extended or modified for other
scenarios.

The result is that, after reading this book, you will be familiar with how to design and implement
advanced applications for Windows Phone that take advantage of remote services to obtain and up-
load data while providing a great user experience on the device.

Who This Book Is For
This book is part of a series on Windows Azure service and client application development. However,
it is not limited to only applications that run in Windows Azure. Windows Phone applications can
interact with almost any service—they use data exposed by any on-premises or remote service. Even
if you are building applications for Windows Phone that use other types of services (or no services at
all), this book will help you to understand the Windows Phone environment, the development pro-
cess, and the capabilities of the device.

This book is intended for any architect, developer, or information technology (IT) professional
who designs, builds, or operates applications and services for Windows Phone. It is written for people
who work with Microsoft® Windows-based operating systems. You should be familiar with the Mi-
crosoft .NET Framework, Microsoft Visual Studio® development system, and Microsoft Visual C#®.
You will also find it useful to have some experience with Microsoft Expression Blend® design software
and the Microsoft Silverlight® browser plug-in, although this is not a prerequisite.

xviii

Why This Book Is Pertinent Now
Mobile devices, and mobile phones in particular, are a part of the fundamental way of life for both
consumers and business users. The rapidly increasing capabilities of these types of devices allow users
to run applications that are only marginally less powerful, and in most cases equally (or even more)
useful than the equivalent desktop applications. Typical examples in the business world are email,
calendaring, document sharing, and other collaboration activities. In the consumer market, examples
include access to social interaction sites, mapping, and games.

Windows Phone is a recent entry into this field, and it is very different from previous versions of
Microsoft mobile operating systems. It has been built from the ground up to match the needs and
aspirations of today’s users, while standardizing the hardware to ensure that applications perform well
on all Windows Phone devices. The result is a consistent run-time environment and a reliable platform
that uses familiar programming techniques. In addition, the latest release of Windows Phone brings
many new capabilities to the platform, enabling developers to create even better, more immersive user
experiences.

Developers can use the tools they already know, such as Visual Studio, to write their applications.
In addition, the Windows Phone 7.1 SDK provides a complete emulation environment and additional
tools specially tailored for developing Windows Phone applications. Developers can use these tools
to write, test, and debug their applications locally before they deploy them to a real device for final
testing and acceptance. This book shows you how to use these tools in the context of a common
scenario—extending an existing cloud-based application to Windows Phone.

How This Book Is Structured
You can choose to read the chapters in the order that suits your existing knowledge and experience,
and select the sections that most interest you or are most applicable to your needs. However, the
chapters follow a logical sequence that describes the stages of designing and building the application.
Figure 1 illustrates this sequence.

•	 Chapter 1, “The Tailspin Scenario,” introduces you to the Tailspin company and the Surveys
application. It describes the decisions that the developers at Tailspin made when designing
their application, and it discusses how the Windows Phone client interacts with their
existing Windows Azure-based services.

•	 Chapter 2, “Building the Mobile Client,” describes the steps that Tailspin took when
building the mobile client application for Windows Phone that enables users to register for
and download surveys, complete the surveys, and upload the results to the cloud-based
service. It includes details of the overall structure of the application, the way that the
Model-View-ViewModel (MVVM) pattern is implemented, and the way that the application
displays data and manages commands and navigation between the pages. The following
chapters describe the individual features of the application development in more detail.

•	 Chapter 3, “Using Services on the Phone,” discusses the way that the Windows Phone
client application stores and manipulates data, manages activation and deactivation, uses live
tiles, synchronizes data with the server application, and captures picture and sound data.

 xixpreface

stall the Windows Azure run-time environment and the Windows Azure emulator to use this version.
However, if you want to see the complete application in action, including features that require a

back end (like push notifications), and work with the Windows Azure service, you can run the full
version. For this, you must install the complete Windows Azure SDK and its run-time components.
The example includes a dependency checker application that will assist you in identifying all the
prerequisites, and get them installed and configured for this version; it will also help you locate and
install any prerequisites that are missing on your system.

To read more and download the application, see “A Case Study for Building Advanced Windows
Phone Applications,” on MSDN.

What You Need to Use the Code
These are the system requirements for running the scenarios:

•	 Microsoft Windows® Vista operating system (x86 and x64) with Service Pack 2 (all editions
except Starter Edition) or Microsoft Windows 7 (x86 and x64) (all editions except Starter
Edition)

•	 Microsoft Visual Studio 2010 Professional, Premium, or Ultimate edition
•	 Microsoft Visual Studio 2010 SP1

•	 Chapter 4, “Connecting with Services,” describes
how the client application running on Windows
Phone uses the services exposed by the Windows
Azure platform. This includes user authentication,
how the client application accesses services and
downloads data, the data formats that the applica-
tion uses, filtering data on the server, and the push
notification capabilities.

The appendices cover unit testing Windows Phone
applications, and information about the Prism Library that
has been adapted for Windows Phone.

The Example Application
This book has an accompanying example application—the
Surveys client that Tailspin built to expose their cloud-
based surveys application on Windows Phone. You can
download the application and run it on your own com-
puter to see how it works and to experiment and reuse the
code.

The application is provided in two versions to make it
easier for you to see just the Windows Phone client or the
combined Windows Phone and Windows Azure applica-
tion. If you want to try only the Windows Phone client,
you can run the simplified version of the application that
uses mock service implementations to provide the data
required by the client application. You do not need to in-

Figure 1
The book structure

The Tailspin Scenario
The “case study” motivations,
contraints, goals

Building the Mobile Client
Designing the UI, form factors, MVVM,
navigation

Using Services on the Phone
Data storage and manipulation, live tiles,
synchronization, capturing pictures, sound
and location

Connecting with Services
Authentication, service design,
filtering, notifications

Appendices
Unit testing
Prism Framework

xx

•	 Windows Phone 7.1 SDK
•	 Silverlight for Windows Phone Toolkit
•	 Microsoft Internet Information Services (IIS) 7.0

The Visual Studio solution uses features such as unit testing and folders, which are not currently
available on Visual Studio Express.

To run the unit tests, you will also need:
•	 Silverlight unit test framework for Windows Phone
•	 Moq for .NET 4

If you want to run the full version of the sample, which uses a Windows Azure service to provide the
data and authentication services to the device, you must also install the following:

•	 Windows Azure Tools for Microsoft Visual Studio 2010 (version 1.6)
•	 Windows Identity Foundation

Who’s Who
This book uses a set of scenarios that demonstrate designing and building the Windows Phone client
application and integrating it with cloud-based services. A panel of experts comments on the develop-
ment efforts. The panel includes a Windows Phone specialist, a software architect, a software devel-
oper, and an IT professional. The scenarios can be considered from each of these points of view. The
following table lists the experts for these scenarios.

Christine is a phone specialist. She understands the special requirements
inherent in applications designed to be used on small mobile devices. Her
expertise is in advising architects and developers on the way they should
plan the feature set and capabilities to make the application usable and
suitable for these types of devices and scenarios.

“To build successful applications that work well on the phone,
you must understand the platform, the user’s requirements,
and the environment in which the application will be used.”

 xxi

Jana is a software architect. She plans the overall structure of an
application. Her perspective is both practical and strategic. In other words,
she considers not only what technical approaches are needed today, but
also what direction a company needs to consider for the future.

“It’s not easy to balance the needs of the company, the users, the IT
organization, the developers, and the technical platforms we rely on.”

Markus is a senior software developer. He is analytical, detail-
oriented, and methodical. He’s focused on the task at hand, which
is building a great application. He knows that he’s the person who’s
ultimately responsible for the code.

“I don’t care what platform you want to
use for the application, I’ll make it work.”

Poe is an IT professional who’s an expert in deploying and
running applications in a corporate data center. Poe has a keen
interest in practical solutions; after all, he’s the one who gets
paged at 3:00 AM when there’s a problem.

“Integrating our server-based applications with mobile devices such
as phones is a challenge, but it will broaden our reach and enable us
to implement vital new capabilities for our applications and services.”

If you have a particular area of interest, look for notes provided by the specialists whose interests align
with yours.

Where to Go for More Information
There are a number of resources listed in text throughout the book. These resources will provide
additional background, bring you up to speed on various technologies, and so forth. For your conve-
nience, there is a bibliography online that contains all the links so that these resources are just a click
away.

All links in this book are accessible from the book’s online bibliography. You can find the bibliog-
raphy on MSDN at: http://msdn.microsoft.com/en-us/library/gg490786.aspx.

preface

 1

1

This chapter introduces a fictitious company named Tailspin. Tailspin’s flagship product is an online
service, named Surveys, that enables other companies or individuals to conduct their own online
surveys. A year ago, Tailspin extended this service to mobile users, enabling subscribers to the Surveys
application to publish surveys to people with Windows® Phone devices. These people used the Sur-
veys mobile client application for Windows Phone OS 7.0 to capture survey data from the field, and
it proved to be highly successful. Tailspin has now decided to develop a new version of the Surveys
mobile client application that uses some of the new functionality available in Windows Phone OS 7.1,
in order to improve the application experience. The chapters that follow show, step by step, how
Tailspin designed and developed the Surveys mobile client application to run on Windows Phone
devices that run Windows Phone OS 7.1.

The Tailspin Company
Tailspin is a two-year-old ISV company of approximately 30 employees that specializes in developing
solutions using Microsoft® technologies. The developers at Tailspin are knowledgeable about various
Microsoft products and technologies, including the .NET Framework, Windows Azure™ technology
platform, Silverlight® browser plug-in, Microsoft Visual Studio® development system, and Windows
Phone OS 7.0. The Surveys mobile client application was the first application that the developers at
Tailspin created for the Windows Phone platform. It increased both the volume of survey responses,
and their customer base. Tailspin believes that the time is right to develop a new mobile client applica-
tion that will use some of the new functionality available in Windows Phone OS 7.1. They hope their
innovative approach to collecting survey data that the mobile client application offers will continue
to help it to grow its market share and increase its revenues.

Tailspin’s Strategy
Tailspin is an innovative and agile organization; it is well placed to capitalize on new technologies, the
business opportunities offered by the cloud, and the increasing sophistication of mobile phones. As
an established company, Tailspin is willing to take risks and use new technologies when it implements
applications.

The Tailspin Scenario

2 chapter one

Tailspin has gained a competitive advantage by being an early
adopter of new technologies, especially in mobile devices and the
cloud. It gained experience developing the Surveys mobile client ap-
plication for Windows Phone OS 7.0, and will build on this experience
when developing the Surveys mobile client application for Windows
Phone OS 7.1.

Tailspin’s Goals and Concerns
The Surveys application has been a great success for Tailspin, and their
market position was further improved by developing the Surveys mo-
bile client application for Windows Phone OS 7.0. Tailspin first devel-
oped the mobile client application because subscribers wanted to be
able to proactively find survey respondents. Instead of waiting for
respondents to come to the survey website by following a link on a
web page or in an email, subscribers wanted other ways of finding
survey respondents. For example, subscribers wanted to be able to use
surveyors who could go out and interview people.

When Tailspin developed the Surveys mobile client application for
Windows Phone OS 7.0 they identified three key features they felt the
Surveys application should have:

1. The application should support a wider range of question
types and enable respondents to include additional data, such
as pictures, audio, and location data, as a part of their survey
responses.

2. It should allow people to provide survey responses when they
are away from their computers. A convenient time to respond
to a survey might not be a convenient time to be using a
computer, for example during a commute or while waiting in a
checkout line.

3. It should allow subscribers to capture a geographical location
for the respondents answering a survey.

The developers at Tailspin had a year’s experience with Windows
Phone as a platform, and were confident of their abilities to build the
Surveys mobile client application for Windows Phone OS 7.1. How-
ever, the developers first had to understand the capabilities of Win-
dows Phone OS 7.1 in order to determine how best to architect and
design both the mobile client application and the elements of the
application in the cloud.

Tailspin wants to develop a
new version of the Surveys
mobile client application that
uses some of the new function-
ality in Windows Phone
OS 7.1.

The developers at Tailspin
already have Windows
Phone OS 7.0 development
skills.

 3The Tailspin Scenario

There are many new features available in Windows Phone OS 7.1
including:

•	 Fast application switching
•	 Multitasking
•	 Background agents
•	 Background file transfers
•	 New sensors
•	 Network information
•	 Enhanced push notification support
•	 Live tiles
•	 Local database support
•	 Sockets support
•	 Encrypted credentials store
•	 Programmatic camera access
The Tailspin developers had to decide which of the new features

would add value to the mobile client application and offer a better
user experience.

Three key areas of concern for Tailspin in using the Windows
Phone platform were reliability, security, and connectivity.

Windows Phone devices may be only intermittently connected to
the Internet, so the mobile client application had to be capable of
reliably storing the collected data until it could be sent to the cloud
application. Tailspin also wanted to make sure that passwords held on
the Windows Phone device were stored securely.

For some surveys, subscribers wanted to be able to determine the
identity of the person submitting the survey data to the cloud applica-
tion.

Tailspin also wanted to implement a service endpoint in Windows
Azure that best supports the requirements of Windows Phone de-
vices. The developers at Tailspin had to make decisions about the
connectivity between the mobile client application and the back end,
such as whether to use Representational State Transfer (REST)-style
or SOAP-style web services, how “chatty” the interface should be, and
how to handle retries when sending a message failed.

Finally, Tailspin wanted to be able to leverage the existing skills of
its developers and minimize any retraining necessary to develop the
Surveys mobile client application for Windows Phone OS 7.1.

A Windows Phone 7.5 device is a Windows
Phone that is running Windows Phone OS 7.1.

4 chapter one

The Surveys Application Architecture
Figure 1 shows a high-level view of the architecture of the Surveys application.

Figure 1
Architectural view of the Tailspin Surveys application

There are two, top-level components in the Surveys application. The first is the back end that
Tailspin hosts in Windows Azure and that enables subscribers to create, publish, and analyze surveys.
This back end is described in the book, Developing Applications for the Cloud on the Microsoft Windows
Azure Platform 2nd Edition, available on the MSDN® website. The second component, which is the
focus of this guidance, is a mobile client application that runs on Windows Phone devices and that
enables surveyors to collect survey response data and send it to the back end. This guidance also de-
scribes the changes to the back-end cloud application that were necessary to support the mobile
client application.

Windows Azure

Application Marketplace

Subscribers

web
Services Applications web

Tailspin
ISV

Subscribe
Get surveys

Answer survey

Buy / Acquire
Download

Publishes

WP
Application

Create
Publish
Analyze

Deploy

Adatum

Fabrikam

 5The Tailspin Scenario

Tailspin is developing the mobile client application to support
new features in the Surveys service. These new features include the
following:

•	 The ability for surveyors to filter available surveys on differ-
ent criteria.

•	 The ability to collect rich data from survey respondents, such
as the respondent’s location, voice recordings, and pictures,
as part of the survey.

•	 The ability of the application to notify surveyors that new
surveys are available.

•	 The ability of the application to download new surveys from
the cloud service and upload survey answers to the cloud ser-
vice, in the background.

The Actors
There are three actors in the scenario supported by the architecture:
the ISV, the subscribers, and the surveyors.

Tailspin - The ISV
Tailspin has developed a multi-tenant, Software as a Service (SaaS)
application named Surveys that it runs in the cloud. A range of sub-
scribers—from individuals, through small companies, to large enter-
prises—uses the Surveys service to run custom surveys. Tailspin has
also developed the mobile client application for Windows Phone de-
vices running Windows Phone OS 7.1, described in this guidance, that
it makes available to surveyors through the Windows Phone Market-
place.

Fabrikam and Adatum - The Subscribers
In the scenario, Fabrikam and Adatum are also fictitious companies
who play the role of subscribers to the Surveys service. They design
and launch surveys using the Surveys service, wait for responses, and
then analyze the results that the Surveys application collects.

The Surveyors - Windows Phone Users
The surveyors, who typically work from home, subscribe to surveys
based on a predefined criteria and are notified when new surveys are
published. Using a Windows Phone device, they can either answer the
survey questions themselves, or they can interview other people and
use the device to capture the survey response data. For example, a
surveyor could use the device to record traffic patterns at different
times of the day or to go door-to-door collecting survey responses.

The mobile client application
will allow surveyors to filter
surveys based on the tenant,
but Tailspin could extend this
in the future to include filters
on factors such as survey
length, target audience, and
location.

Tailspin is taking advantage
of features such as the
camera and the GPS, which
are part of the Windows
Phone platform, to offer this
functionality in the Surveys
mobile client application.

By using surveyors, Tailspin has targeted surveys more effectively and improved the response rate. Tailspin aims to
further improve the application experience with the Surveys mobile client application for Windows Phone OS 7.1.

6 chapter one

The Business Model
Tailspin’s business model is to charge subscribers a monthly fee for
access to the Surveys application, and Tailspin must then pay the ac-
tual costs of running the application. The Surveys mobile client ap-
plication is free to surveyors, and surveyors who are collecting multiple
responses to surveys can also be compensated. A Surveys subscriber
such as Adatum, could either pay a surveyor for the number of submit-
ted surveys or offer discount coupons. This works by identifying the
surveyor who submitted the survey responses.

Tailspin is also planning to use the Microsoft Advertising SDK for
Windows Phone to embed advertisements in the mobile client appli-
cation as an additional way of generating revenue. The Advertising
SDK is fully integrated into the Windows Phone 7.1 SDK and does not
need to be installed separately.

The sample application that you can download to go with this
guide doesn’t implement any revenue-generating functionality;
however, it is likely that a real-world version of the application
would do this.

The Application Components
Figure 2 illustrates the key functional components of the mobile client
application and the relationships between them.

Tailspin will make the mobile
client application available
for free.

Figure 2
Tailspin Surveys, end to end

Phone

Notifications

Surveys Application

UI

Sync

Surveys
Service

Tailspin
Back End

Tenant
website

Notification
Services

Windows Azure

WCF REST
JSON

Background Tasks

 7The Tailspin Scenario

Developing Applications for the Cloud on the Microsoft Windows Azure
Platform 2nd Edition describes the Tailspin back end and Subscriber
website architecture, design, and implementation in detail. These
components, which run on Windows Azure, enable subscribers to
design new surveys and to analyze the responses that the application
collects. The book also describes a public website that people can use
to complete surveys using a web browser. The scenario described in
this guidance focuses on an application running on Windows Phone
OS 7.1 that provides an additional way for Tailspin to capture survey
results.

The Surveys application on Windows Phone comprises a number
of components. A user interface (UI) enables the user to complete
surveys and perform other tasks. A storage repository holds survey
definitions and survey responses. A synchronization component is
responsible for downloading survey definitions from the Tailspin back
end and for uploading completed survey data.

To enable the Windows Phone application to communicate with
the back end, the cloud components include an API that exposes the
functionality that the mobile client application requires. Tailspin uses
Windows Communication Foundation (WCF) REST to transport the
data over the network. The Windows Phone application also authen-
ticates with the back end so that the back end can determine which
surveys it should make available to the mobile client and can track
which responses come from which user. In the scenario described in
this guidance, the mobile client application authenticates with the
back end using basic authentication, but it is designed in such a way
that it could be extended to accept more sophisticated mechanisms,
such as a claims-based approach.

The application uses push notifications to inform the mobile cli-
ent application that there are new surveys available to download.
These push notifications will reach the Windows Phone device even
when the Surveys mobile client application is not running.

Later chapters in this guidance describe these components in
more detail.

All links in this book are accessible from the book’s online bibli-
ography. You can find the bibliography on MSDN at: http://msdn.mi-
crosoft.com/en-us/library/gg490786.aspx.

The Windows Phone mobile
client application is an
alternative to using the web
as a mechanism for collecting
survey responses.

 9

2 Building the Mobile Client

This chapter describes how the developers at Tailspin built the user
interface (UI) components of the mobile client application. It begins
by discussing some of the goals and requirements that Tailspin identi-
fied for the application before discussing, at a high level, the structure
and key components of the application.

The chapter then discusses navigation and UI controls in more
detail, and describes how and why Tailspin implemented the Model-
View-ViewModel (MVVM) pattern. The chapter also gives an over-
view of the MVVM pattern itself.

The chapter includes discussions of the design Tailspin adopted for
the application as well as detailed descriptions of the implementation.

Overview of the Mobile Client Application
This section provides an overview of the mobile client application to
help you understand its overall structure before you examine the
components that make up the application in more detail. Also, to help
you understand some of the design decisions made by the developers
at Tailspin, it describes some of the goals and requirements that Tail-
spin identified for the application.

Goals and Requirements
Windows® Phone OS 7.1 offers a wealth of features to developers and
designers. The team at Tailspin wanted to ensure that their mobile client
application makes the best possible use of the latest version of the
platform and also plays by the rules. The application follows the recom-
mended usability guidelines to ensure an optimal user experience and
the “good citizen” best practices guidelines to ensure that the applica-
tion makes efficient use of resources on the device in the context of the
phone’s functionality and other installed applications. They identified
three sets of goals for the design and development of the application:
usability goals, non-functional goals, and development process goals.

The Tailspin mobile client
application follows usability
and good citizen best practices.

10 chapter two

For more information about Windows Phone UI design guidelines, see User Experience Design
Guidelines for Windows Phone on the MSDN® developer program website.

Usability Goals
The usability goals are designed to ensure that the user’s experience of the application meets her ex-
pectations for applications on a Windows Phone device. The following table lists some examples.

Goal Description Example

Take advantage of the appearance and
behavior of the Windows Phone
platform.

The application accepts standard input gestures for users to enter data, uses
the standard system colors, and includes icons designed to match the phone’s
theme. The application can update its appearance to blend with the phone’s
standard Light and Dark themes. For more information, see the Themed-
ResourceLocator class in the Resources folder.

Use the standard controls Windows
Phone users are familiar with.

The application uses standard controls, including the ApplicationBar, and
Pivot controls, to make the user feel at home and to minimize the learning
curve. In addition, the application also uses controls from the Microsoft
Silverlight® for Windows Phone Toolkit.

Follow other Windows Phone UI
guidelines, such as those on the use
of the hardware Back button and the
behavior of the application when the
user answers a call or switches to
another application.

The Back button navigates backward in a way that matches the user’s
expectations. The application restores the UI to its previous state after the
user finishes answering an incoming call.

Integrate with the phone capabilities. The application uses the location services on the phone to establish its
geographical location, and it uses the camera and microphone to collect data
for some survey questions.

Handle changes in screen orientation. The application automatically updates the display orientation when the user
changes the phone’s orientation.

Handle standard screen resolutions. The application displays correctly in the standard screen resolutions for
Windows Phone devices.

The application should always have a
responsive UI.

The application performs long-running tasks, such as synchronizing with the
Surveys service, asynchronously or by the background agent. The application
remains responsive when it has a large number of surveys saved locally and
when it is displaying a survey with a large number of questions.

Take advantage of the background
agent feature of the Windows Phone
platform.

The data being used and produced by the application could synchronize with
the back end in the cloud, even if the application is not running or being used.

 11Building the Mobile Client

Non-Functional Goals
The non-functional goals describe expected behaviors for the applica-
tion, including some good citizen behaviors that relate to the limited
resources on the device. The following table lists some examples.

Goal Description Example

The application should
continue to operate even
when it is not connected to
the back end in the cloud.

The application stores survey definitions and
user responses in local storage, and it synchro-
nizes with the cloud back-end store when
connectivity is restored.

The application should not
rely on specific network
capabilities or assume a
minimum available band-
width.

The UI always interacts with local storage.
The application uses an asynchronous call to
synchronize with the Tailspin Surveys remote
service and uses a store-and-forward pattern.
Only the background agent, which uploads
survey answers, requires a non-cellular connec-
tion and this is handled by the background
agent itself.

The application should try to
minimize the costs associated
with using the network.

The application tries to minimize the amount
of data transferred over the network by using
JSON serialization instead of XML. The
application does not compress the data because
of the additional CPU overhead and battery
consumption that this requires. In addition, the
resource-intensive task, used by the background
agent to upload survey answers, checks the
current network interface type and only runs
if a WiFi connection is available.

The application should proac-
tively notify users of new
information generated by the
back end.

The back end uses the Microsoft Push Notifica-
tion Service to notify users of new surveys
available for their phones.

The application should use
memory efficiently and, for
performance, minimize
memory allocations.

The sample application uses a dependency
injection container to manage which objects
are cached to improve performance and which
objects are recreated whenever they are used.

As a “good citizen,” the
application should minimize
its use of isolated storage—
a shared resource on the
phone.

The application removes completed surveys
from isolated storage after the data successfully
synchronizes with the Tailspin Surveys service.
It also uses the JSON serializer when it saves
data to isolated storage.

Users will prefer an
application that fits well
with the phone’s UI design
and theme. You will also have
to comply with certain UI
design guidelines if you want
to distribute your application
through Windows
Marketplace.

12 chapter two

Development Process Goals
Tailspin also identified a number of goals that relate to their own de-
velopment processes. The following table lists some examples.

Goal Description Example

Tailspin wants to have highly
testable code.

A significant advantage of the MVVM pattern
is that it makes the code more testable.

Tailspin wants to able to
support other mobile platforms
in the future.

Using standards-based approaches to interact
with the back end makes it easier to develop
other clients for other platforms.

Tailspin wants to have an
efficient development process.

Developers and designers can work in parallel.
Designers can prototype and build the UI
using Microsoft Expression Blend® design
software while the developers focus on the
application’s logic.

Tailspin wants to be able to
adapt the application to work
with any new capabilities of
future versions of the Windows
Phone platform.

The application uses an abstract persistence
model to “wrap” local isolated storage on the
device. Tailspin could easily change this in
future to use the local database that resides
in the application’s isolated storage container.

You should always be
aware of how your
application consumes the
limited resources on the
phone, such as bandwidth,
memory, and battery power.
These factors are far more
significant on the phone
than on the desktop.

 13Building the Mobile Client

The Components of the Mobile Client
Application

Figure 1 shows the main components that comprise the Tailspin Sur-
veys client application.

The Windows Phone
platform will continue
to grow, so design your
application so that you
can easily modify it to
use new features.

The application uses a number
of features offered by the
Windows Phone platform.

Figure 1
The Tailspin Surveys client application

The developers at Tailspin built three key components of the ap-
plication: the UI, the storage sub-system, and the synchronization
service. The application also uses some components of the Windows
Phone platform; in particular, the GPS, camera, microphone, the noti-
fication services, and the network services that the application uses
to communicate with the back-end web services.

This chapter focuses on the UI components and also describes
how the application components are linked together through Tail-
spin’s implementation of the MVVM pattern. Chapter 3, “Using Ser-
vices on the Phone,” will examine the storage and synchronization
components, and Chapter 4, “Connecting with Services,” will look at
the notification process and the integration with the back end in
more detail.

Tailspin Surveys Mobile Client Application

Synchronization Services

User Interface

Device
Sensors

Network
Services

Storage

Tailspin
Back−end
in the
Cloud

Notification
Services

14 chapter two

The Structure of the Tailspin Surveys Client Application
Figure 2 shows the structure of the Tailspin Surveys mobile client application in more detail. For
clarity, the diagram does not show all the links between all the components. In particular, multiple
links exist between the model components and the view model and the application services, but
showing all of these would unnecessarily clutter the diagram.

Figure 2
Tailspin Surveys mobile client application structure

Views

View Models

Models

Application
Services

WMAppManifest.xaml
<Task>
<DefaultTaskName =“_default” NavigationPage= “Views/SurveyList/SurveyListView.xaml”>
</Tasks>

AppSettingsView.xaml FilterSettingsView.xaml SurveyListView.xaml TakeSurveyView.xaml

Question Views

AppSettingsViewModel

FilterSettingsViewModel

SurveyListViewModel

TakeSurveyViewModel

OpenQuestionViewModel

MultipleChoiceQuestionViewModel

FiveStarsQuestionViewModel

PictureQuestionViewModel

VoiceQuestionViewModel

TenantItem QuestionAnswer SurveyAnswer

Question QuestionType SurveyTemplate

Settings
Store

PhoneApplicationService Surveys
Store

App.xaml

ViewModelLocator Notification
Service

Surveys
Synchronization

Service

Other
Infrastructure

Services

Network

 15Building the Mobile Client

To understand how Tailspin built the UI components (such as the
SurveyListView page and the AppSettingsView page), how the
navigation between the pages work, and how the application deter-
mines which page to display to the user when the user launches the
application, you should read the section, “The Design of the User In-
terface,” later in this chapter.

To understand how and why Tailspin uses the MVVM pattern, you
should read the section, “Using the Model-View-ViewModel Pattern,”
later in this chapter. This section explains the roles of the view, view
model, and model components and how they are linked together, in-
cluding the role of the ViewModelLocator class. This section also
describes some data-binding scenarios in the application, including
the way the application uses the Pivot control on the SurveyListView
page and on the TakeSurveyView page.

To understand how the application manages its state when it’s
dormant or tombstoned, you should read the section, “Handling Acti-
vation and Deactivation,” in Chapter 3, “Using Services on the Phone.”

An application is made dormant by the Windows Phone device
when, for example, the user navigates to another application or
answers a call while using the application. In this state, the ap-
plication remains intact in memory but no processing takes place.
If the application is reactivated from this state, it does not need
to recreate any state because it has been preserved. Dormant ap-
plications may be tombstoned by the operating system in order to
free up memory. A tombstoned application has been terminated,
but information about its navigation state and state dictionaries
are preserved for when the application is relaunched. A device will
maintain tombstoning information for up to five applications at
once. For more information see, “Execution Model Overview for
Windows Phone,” on MSDN.

To understand how the application manages persistent data on
the phone, such as application settings and survey responses, you
should read the section, “Using Isolated Storage on the Phone,” in
Chapter 3, “Using Services on the Phone.”

To understand how the Tailspin Surveys cloud application can
notify the mobile client of new surveys by using the push notification
service, you should read Chapter 4, “Connecting with Services.”

To understand how the application transfers survey data between
the mobile client application and the cloud application, you should
read Chapter 4, “Connecting with Services.”

Dependency Injection
The developers at Tailspin use a dependency injection container to
manage the instantiation of many of the classes, including the view
model classes.

Dependency injection
enables decoupling of
concrete types from the
code that depends on these
types. It uses a container that
holds a list of registrations
and mappings between
interfaces and abstract types
and the concrete types that
implement or extend these
types.

16 chapter two

Tailspin uses the Funq dependency injection container instead of
the Unity Application Block (Unity) because Unity is not available for
the Windows Phone platform. The Funq dependency injection con-
tainer is also lightweight and very fast.

The ContainerLocator class shows how the application creates
the registrations and mappings in the Funq dependency injection
container. In the Tailspin mobile client application, the ViewModel-
Locator instantiates the ContainerLocator object and is the only
class in the application that holds a reference to a ContainerLocator
object.

By default, the Funq dependency injection container registers
instances as shared components. This means that the container will
cache the instance on behalf of the application, with the lifetime of
the instance then being tied to the lifetime of the container.

The TailSpin Solution
The TailSpin.PhoneOnly solution organizes the source code and other
resources into projects. The following table outlines the main projects
that make up the Surveys mobile client application.

Project Description

TailSpin.Phone.Adapters This project contains interfaces, adapters, and
facades for Windows Phone API functionality.

TailSpin.PhoneAgent This project contains a background agent imple-
mentation that launches a periodic and a
resource-intensive task.

TailSpin.PhoneClient This project contains the views and view
models for the Surveys mobile client applica-
tion, along with supporting classes and
resources.

TailSpin.PhoneClient.Adapters This project contains interfaces, adapters, and
facades for Windows Phone API functionality
that is not supported by background agents.
Creation of this project was necessary in order
to pass the capability validation performed as
part of the Windows Phone Marketplace
application submission process. This is because
the set of APIs not supported by background
agents must reside in a project not referenced
by the TailSpin.PhoneAgent project. For more
information, see “Unsupported APIs for
Background Agents for Windows Phone ” on
MSDN.

TailSpin.PhoneServices This project contains web service client
implementations that interact with the Tailspin
Surveys service in the cloud.

You should consider
carefully which objects you
should cache and which
you should instantiate on
demand. Caching objects
improves the application’s
performance at the expense
of memory utilization.

 17Building the Mobile Client

The Contents of the TailSpin.PhoneClient Project
The TailSpin.PhoneClient project organizes the source code and other resources into folders. The
following table outlines what is contained in each folder and provides references to where this guide
describes the content in more detail.

Project Description

Root In the root folder of the project, you’ll find the App.xaml file that every Microsoft
Silverlight® project must include. This defines some of the startup behavior of the
application. The root folder also contains some image files that all Windows Phone
applications must include.

Properties In this folder, you’ll find two manifest files and the AssemblyInfo.cs file. The
WMAppManifest.xml file describes the capabilities of the application and specifies the
initial screen to display when the user launches the application. In addition, it also
contains the details of the background agent used by the application.

Resources This folder holds various image files that the application uses and a utility class that
performs conversions to types that are used in UI.

Views This folder contains the views that define the screens in the application. The section
“Using the Model-View-ViewModel Pattern” in this chapter describes the role of views
in this pattern and highlights the fact that there should be little or no code in the
code-behind files.

ViewModels This folder contains the view models. The section “Using the Model-View-ViewModel
Pattern” in this chapter describes the role of view models in this pattern. You will find
more view models than views because individual user controls may also have their own
view models.

Themes The XAML file in this folder contains style definitions.

Services This folder contains the ContainerLocator class, which creates the registrations and
mappings in the Funq dependency injection container. The folder also contains the
ScheduledActionClient class that uses the ScheduledActionService class from the
Windows Phone API.

Services/RegistrationService This folder contains client implementations that interact with the Tailspin Surveys
service in the cloud. Chapter 4, “Connecting with Services,” describes the web service
clients in this folder.

Infrastructure This folder contains utility code required by the application. The section “Using XNA
Interop to Record Audio” in Chapter 3, “Using Services on the Phone,” describes how
some of the classes in this folder are used.

The Contents of the TailSpin.PhoneClient.Adapters Project
This project contains interfaces that mirror functionality in several classes in the Windows Phone 7.1
SDK, including ICameraCaptureTask, IShellTile, and INavigationService.

This project also includes adapter implementations of these interfaces that simply pass parameters
to and return values from the underlying instances of the SDK classes. These interfaces and adapters
are used in the mobile client application to increase testability. For more information see Appendix A,
“Unit Testing Windows Phone Applications.”

This project is similar to the TailSpin.Phone.Adapters project. Both projects have interfaces and
adapters that “wrap” functionality in the Windows Phone 7.1 SDK. These two projects are separated
because the set of APIs not supported by background agents must reside in a project not referenced
by the TailSpin.PhoneAgent project. The TailSpin.PhoneAgent project utilizes the adapters in the
TailSpin.Phone.Adapters project but not the TailSpin.PhoneClient.Adapters project.

18 chapter two

The Contents of the TailSpin.PhoneServices Project
The TailSpin.PhoneServices project organizes the source code into
folders. The following table outlines what is contained in each folder
and provides references to where this guide describes the content in
more detail.

Project folder Description

Models This folder contains the models. The section
“Using the Model-View-ViewModel Pattern” in
this chapter describes the role of the models.

Services/Clients This folder contains the HttpClient class that
makes asynchronous web requests. Chapter 4,
“Connecting with Services,” describes this class.

Services/RegistrationService
Services/SurveysService

These folders contain client implementations
that interact with the Tailspin Surveys service in
the cloud. Chapter 4, “Connecting with Services,”
describes the web service clients in this folder.

Services/Stores This folder contains classes for persisting
application settings and survey data to and from
isolated storage. Chapter 3, “Using Services on
the Phone,” describes these stores.

The Design of the User Interface
The Tailspin Surveys mobile client application follows the UI design
guidance published in the User Experience Design Guidelines for Windows
Phone, which you can view on MSDN.

This section describes how users navigate between the different
pages of the mobile client application and outlines the controls that
Tailspin uses in the application’s UI.

Page Navigation
The Tailspin mobile client application uses only a small number of
pages, with a limited number of navigation routes between those
pages. However, it also supports pinning Tiles to Start. A Tile is a link
to an application displayed in Start. An Application Tile can be pinned
to Start, which when tapped by the user will launch the application.
Users can also pin a survey as a secondary Tile to Start. When a sec-
ondary Tile is tapped by the user, the application is launched and the
survey page is navigated to. The intention of this is to offer the user
quick and easy access to part of the application. For more information
about tiles, you should read the section, “Using Live Tiles on the
Phone,” in Chapter 3, “Using Services on the Phone.”

User Experience Design
Guidelines for Windows
Phone describes best practices
for designing the UI of a
Windows Phone application.

Applications for the phone
should be task-based. Users
will pick up the device, use
the application, and then
get on with something else.
Users don’t want a
complicated application
with a lot of different pages.

 19Building the Mobile Client

Figure 3 shows how the user navigates within the application on the phone.

Figure 3
Navigation in the Surveys client application

Five Star Question Picture Question

Pivot control displaying
multiple survey questions.
Question types include: Five
Star, Multiple Choice, Free
Text, Picture, and Voice
Recording.

Take Picture

favorites
TAILSPIN SURVEYS

15 minutes
1/3

0 completed

My Second Survey

new by length
Pivot control offering
different filtered views
of surveys: new, favorites,
by length.
You can flick left or right
to navigate.

Fabricam

25 minutes
1/5

0 completed

My First Survey
Adatam

Settings
TAILSPIN SURVEYS

Username

Password

Subscribe to Push Notifications
Off
Allow Access your location

Allow Background Tasks
Off

Off

question2
 My First Survey ADATUM

Multiple Choice Question

option 1

option 2

option 3

option 4

option 5

Filters
TAILSPIN SURVEYS

Fabrikam

Adatum

Another Filter

FilterSettingsView.xaml

save cancel

SURVEYS
TAILSPIN SURVEYS

To start using TailSpin for
Windows Phone configure
your settings.

SurveyListView.xaml TakeSurveyView.xaml

AppSettingsView.xaml

SurveyListView.xaml

Launch from Application Tile Launch from secondary Tile

First run Saved credentials

tap/back

tap/back tap/back tap/back

save pin complete

save cancel

sync settings filters
sync settings filters

20 chapter two

When the application is launched from anything other than a secondary Tile, the initial screen to
display is determined from the DefaultTask element in the WMAppManifest.xml file. The following
code example shows how the application is configured to first display the SurveyListView page to the
user.

XML
<Tasks>
 <DefaultTask Name ="_default"
 NavigationPage="Views/SurveyList/SurveyListView.xaml"/>
</Tasks>

When the application is launched from a secondary Tile, the application launches the page
specified by the navigation destination of the Tile.

Before users can use the application for the first time, they must enter the credentials that will be
used when the application synchronizes with the Tailspin Surveys service. The developers at Tailspin
considered automatically navigating users to the AppSettingsView page if they haven’t already supplied
their credentials, but this introduced an issue with the way navigation behaves in the application. If the
application automatically navigates the user to the AppSettingsView page from the SurveyListView
page, and if the user then decides he or she doesn’t want to enter credentials (maybe the application
was started by mistake), the user will press the Back button and expect to leave the application. A
simple approach to navigating will have left the SurveyListView page on the navigation stack, so that’s
where the user will end up. For some possible solutions to this problem, see the post, “Redirecting an
initial navigation,” on Peter Torr’s blog.

The application does not automatically navigate users to the AppSettingsView page; instead, it
displays a message that explains to users that they must provide their credentials. The following code
example from the SurveyListView.xaml file shows how the visibility of the message is controlled based
on the value of the SettingAreNotConfigured property.

XAML
<StackPanel x:Name="SettingNotConfiguredPanel" Grid.Row="0"
 Margin="12,17,0,28"
 Visibility="{Binding SettingAreNotConfigured,
 Converter={StaticResource VisibilityConverter}}">
 <TextBlock x:Name="ApplicationTitle" Text="TAILSPIN SURVEYS"
 Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="Surveys" Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}"/>
 <ContentControl Template="{StaticResource
 SettingsNotConfiguredTextBlock}" />
</StackPanel>

The following code example from the Styles.xaml file shows the template that defines the mes-
sage.

XAML
<ControlTemplate x:Key="SettingsNotConfiguredTextBlock">
 <TextBlock
 VerticalAlignment="Top"

 21Building the Mobile Client

 Margin="12"
 Style="{StaticResource PhoneTextLargeStyle}"
 Foreground="{StaticResource PhoneSubtleBrush}"
 Text="To start using TailSpin for Windows Phone, configure
 your Settings."
 TextWrapping="Wrap"/>
</ControlTemplate>

When you navigate using the NavigationService class, the behav-
ior of the Back button is automatically determined, so using the Back
button on the SurveyListView page causes the application to exit, and
using the Back button on the AppSettingsView page returns the user
to the SurveyListView page.

The following code example from the AppSettingsViewModel
class shows how the application implements the navigation away
from the AppSettingsView page in code for the Cancel button. Notice
how the Cancel method uses the NavigationService class. This class
is described in detail later in this chapter in the section, “Handling
Navigation Requests.”

C#
public void Cancel()
{
 if (this.NavigationService.CanGoBack)
 this.NavigationService.GoBack();
}

When taking a survey, there are three scenarios that could be in-
voked to navigate away from the TakeSurveyView page. First, the user
could press the back button on the phone. Second, the user could click
the complete survey button on the application bar. Third, the user
could click the save survey button on the application bar. The follow-
ing code example from the TakeSurveyViewModel class shows how
the application implements these scenarios to navigate away from the
TakeSurveyView page. Notice how the CleanUpAndGoBack method
tests the CanGoBack property before calling the GoBack method
from the NavigationService class. This is because users could have
arrived at the page from either the SurveyListView page or from a
pinned tile. If users have arrived at the page from the SurveyListView
page, the CanGoBack property will be true and thus the GoBack
method can be called. If users have arrived at the page from a pinned
tile, the CanGoBack property will be false, preventing the GoBack
method from being called.

The NavigationService class
automatically manages the
behavior of the Back button.

22 chapter two

C#
private void CleanUpAndGoBack(bool completed)
{
 if (NavigationService.CanGoBack)
 {
 ...
 this.NavigationService.GoBack();
 }
 else if (completed)
 {
 ...
 }
 else
 {
 ...
 }
}

Navigating from the survey list screen to an individual survey is a little more complicated because
the application must display the survey that the user currently has selected in the list. Furthermore,
the application must respond to the user tapping on an item in a ListBox control, on a PivotItem in
a PivotControl.

When the user taps a survey name in the list, the navigation to the TakeSurveyView page is ac-
complished using an interaction trigger in the SurveyDataTemplate data template. The following code
example from the Styles.xaml page shows this data template definition along with the style for the
ListBox ItemTemplate.

XAML
<DataTemplate x:Key="SurveyDataTemplate">
 ...
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="MouseLeftButtonUp">
 <i:InvokeCommandAction Command="{Binding TakeSurveyCommand}"/>
 </i:EventTrigger>
 </i:Interaction.Triggers>
 ...
</DataTemplate>

<!--Style for Survey List-->
<Style x:Key="SurveyTemplateItemStyle" TargetType="ItemsControl">
 <Setter Property="ListBox.ItemTemplate"
 Value="{StaticResource SurveyDataTemplate}"/>
</Style>

 23Building the Mobile Client

The action that enables navigation from a tap on an item in the ListBox control is provided by the
EventTrigger and InvokeCommandAction class. This action binds a command to a user tap on an
element in the view—in this example, a tap on an item in a list to the TakeSurveyCommand command
in the SurveyTemplateViewModel view model class. For an explanation of how the TakeSurveyView
page displays the correct survey, based on the survey selected in the list, see the section, “Connecting
the View and the View Model,” later in this chapter.

User Interface Description
Figure 3, earlier in this chapter, shows a mockup of the UI and the navigation routes supported by the
application between the pages. There are a few items in the UI that require some additional explana-
tion.

The SurveyListView page displays the following information about each survey:
•	 The survey creator’s logo.
•	 The survey’s title.
•	 A number to indicate the number of completed surveys pending upload.
•	 The survey creator’s name.
•	 A star to indicate whether the survey is one of the user’s favorites.
•	 A number to indicate how many questions have been answered so far.
•	 A progress bar to indicate how many questions have been answered so far.
•	 A number to indicate the estimated amount of time it should take to complete the survey.
On the TakeSurveyView page, there are three buttons on the application bar. The Save button

saves the current answers to the survey and allows the user to return to the survey later to amend
existing answers and to add additional answers. The Pin button adds a secondary Tile to the Start
screen with the application icon, and with the survey name as the title. Tapping the title sends the user
directly to the survey in the application. The Complete button saves the current answers and marks
the survey as complete and ready for synchronization. You cannot return to or change a completed
survey.

User Interface Elements
The application uses standard controls throughout so that the appearance and behavior of the ap-
plication matches the Windows Phone standard appearance and behavior. The section, “Displaying
Data,” later in this chapter describes how the application implements data binding with the Pivot
control.

The Pivot Control
The application uses a Pivot control on the SurveyListView page to enable the user to view different
filtered lists of surveys, such as new surveys, or favorite surveys, or the list of surveys sorted by length.
The control allows the user to navigate between the different lists by panning left or right, or by using
flick gestures in the application in a way that is consistent with the user’s expectations in the Win-
dows Phone UI. The developers at Tailspin chose to use the Pivot control here because it enabled
them to display a set of items that all have the same data type: in Tailspin Surveys, each PivotItem
control displays a list of surveys.

The application also uses a Pivot control on the TakeSurveyView page to display the survey ques-
tions and collect the survey responses. The developers at Tailspin chose to use the Pivot control here
because its large scrollable area offers a great way to display a complete survey and long text items,
and offers an intuitive way to navigate by scrolling left or right through the questions.

24 chapter two

Styling and Control Templates
The file Styles.xaml in the Themes folder contains some styling information for several of the controls
used on the pages in the application. The ListBox controls that the application uses to display lists of
surveys on the SurveyListView page uses the SurveyTemplateItemStyle style.

The SurveyListView page uses the NoItemsTextBlock control template to display a message
when there are no surveys to display in the ListBox control.

The SurveyListView page uses the SettingNotConfiguredPanel control template to display a
message when the user hasn’t configured his settings in the application.

The ThemedResourceLocator class in the Resources folder shows how the application handles
UI changes if the user chooses either the Dark or Light Windows Phone themes. Although most
controls automatically adjust to different UI themes, there are a few places in the Tailspin mobile
client that need some additional logic, such as where the application uses custom icons.

Context Menus
On the SurveyListView page, if the user taps a survey name, the application navigates to the Take-
SurveyView page and displays the survey questions. If the user taps and holds on a survey name on
the SurveyListView page, the application displays a context menu.

You can find the behavior that causes the context menu to display in the ContextMenu control
itself.

Tailspin uses the ContextMenu control from the Silverlight for Windows Phone Toolkit, which
is available on the Silverlight Toolkit page on CodePlex.

The following code example from the data template in the Styles.xaml file shows how Tailspin
declares the ContextMenu control that displays the context menu when the user taps and holds on
a survey name.

XAML
<toolkit:ContextMenuService.ContextMenu>
 <toolkit:ContextMenu>
 <toolkit:MenuItem Header="mark as favorite"
 Command="{Binding MarkFavoriteCommand}"
 Visibility="{Binding IsFavorite,
 Converter={StaticResource NegativeVisibilityConverter}}"/>
 <toolkit:MenuItem Header="remove mark as favorite"
 Command="{Binding RemoveFavoriteCommand}"
 Visibility="{Binding IsFavorite,
 Converter={StaticResource VisibilityConverter}}"/>
 <toolkit:MenuItem Header="pin to start"
 Command="{Binding PinCommand}"
 IsEnabled="{Binding IsPinnable}"/>
 </toolkit:ContextMenu>
</toolkit:ContextMenuService.ContextMenu>

 25Building the Mobile Client

Using the Model-View-ViewModel Pattern
Now that you’ve seen how Tailspin designed the UI of the application,
including the choice of controls, and the navigation through the ap-
plication, it’s time to look behind the scenes to discover how Tailspin
structured the mobile client for the Windows Phone platform.

The developers at Tailspin decided to adopt a Model-View-
ViewModel (MVVM) approach to structuring the Windows Phone
application. This section provides an overview of MVVM, explains
why it is appropriate for Windows Phone applications, and highlights
some of the decisions made by the developers at Tailspin about the
implementation.

The Premise
The MVVM approach naturally lends itself to XAML application plat-
forms such as Silverlight. This is because the MVVM pattern leverages
some of the specific capabilities of Silverlight, such as data binding,
commands, and behaviors. MVVM is similar to many other patterns
that separate the responsibility for the appearance and layout of the
UI from the responsibility for the presentation logic; for example, if
you’re familiar with the Model-View-Controller (MVC) pattern, you’ll
find that MVVM has many similar concepts.

Overview of MVVM
There are three core components in the MVVM pattern: the model,
the view, and the view model. Figure 4 illustrates the relationships
between these three components.

The application is designed and
built using the MVVM pattern.

Figure 4
The Model-View-ViewModel pattern

MVVM uses concepts
familiar to developers
who have used other
presentation model patterns
such as MVC.

View Model

Data Binding and
Commands

View

State and
Operations

Send Notifications

Send Notifications

ViewModel updates
the model Model

26 chapter two

The view is responsible for defining the structure, layout, and ap-
pearance of what the user sees on the screen. Ideally, the view is de-
fined purely with XAML, with a limited code-behind that does not
contain business logic.

The model in MVVM is an implementation of the application’s
domain model that can include a data model along with business and
validation logic. Often, the model will include a data access layer. In
the case of a Windows Phone application, the data access layer could
support retrieving and updating data by using a web service or local
storage.

The view model acts as an intermediary between the view and
the model, and is responsible for handling the view logic. The view
model provides data in a form that the view can easily use. The view
model retrieves data from the model and then makes that data avail-
able to the view, and may reformat the data in some way that makes
it simpler for the view to handle. The view model also provides imple-
mentations of commands that a user of the application initiates in the
view. For example, when a user clicks a button in the UI, that action
can trigger a command in the view model. The view model may also
be responsible for defining logical state changes that affect some
aspect of the display in the view, such as an indication that some
operation is pending.

In addition to understanding the responsibilities of the three
components, it’s also important to understand how the components
interact with each other. At the highest level, the view “knows about”
the view model, and the view model “knows about” the model, but
the model is unaware of the view model, and the view model is un-
aware of the view.

MVVM leverages the data-binding capabilities in Silverlight to
manage the link between the view and view model, along with behav-
iors and event triggers. These capabilities limit the need to place busi-
ness logic in the view’s code-behind.

Typically, the view model interacts with the model by invoking
methods in the model classes. The model may also need to be able to
report errors back to the view model by using a standard set of events
that the view model subscribes to (remember that the model is un-
aware of the view model). In some scenarios, the model may need to
be able to report changes in the underlying data back to the view
model; again, the model should do this using events.

In some scenarios,
the view model may
call a web service
directly instead
of using a model
class that itself
makes a call to the
web service. For
example, if a web
service retrieves a
collection of Person
objects that you
can deserialize and
use directly in the
view model, there’s
no need to define
another Person class
in the model.

The view model
isolates the view from
the model classes and
allows the model to
evolve independently
of the view.

 27Building the Mobile Client

This chapter focuses on the view and view model components of
the Tailspin mobile client application. Chapter 3, “Using Services on
the Phone,” includes a description of the model components in the
application.

Benefits of MVVM
MVVM enables a great developer-designer workflow that promotes
these benefits:
•	 During the development process, developers and designers can

work more independently and concurrently on their compo-
nents. The designers can concentrate on the view, and if they
are using Expression Blend, they can easily generate sample data
to work with, while the developers can work on the view model
and model components.

•	 The developers can create unit tests for the view model and the
model without using the view. The unit tests for the view model
can exercise exactly the same functionality as used by the view.

•	 It is easy to redesign the UI of the application without touching
the code because the view is implemented entirely in XAML.
A new version of the view should work with the existing view
model.

•	 If there is an existing implementation of the model that encap-
sulates existing business logic, it may be difficult or risky to
change. In this scenario, the view model acts as an adapter for
the model classes and enables you to avoid making any major
changes to the model code.

•	 Although the benefits of MVVM are clear for a complex applica-
tion with a relatively long shelf life, the additional work needed
to implement the MVVM pattern may not be worthwhile for
simple applications or applications with shorter expected
lifetimes.
You’ve seen a high-level description of the MVVM pattern, and

the reasons that Tailspin decided to adopt it for their Windows Phone
client. The next sections describe the following implementation
choices made by the developers at Tailspin when they implemented
MVVM for the Surveys application:
•	 How Tailspin connects the view and the view model components.
•	 Examples of how Tailspin tests components of the application
•	 How Tailspin implements commands, asynchronous operations,

and notifications to the user.
•	 Details of data binding and navigation.

For more information about MVVM, see Chapter 5, “Implementing
the MVVM Pattern,” and Chapter 6, “Advanced MVVM Scenarios,” of
the Prism documentation on MSDN.

You should evaluate
carefully whether MVVM
is appropriate for your
application, considering the
initial overhead of using this
approach.

28 chapter two

Connecting the View and the View Model
Now is a good time to walk through the code that implements the
MVVM pattern in the Windows Phone application in more detail. As
you read through this section, you may want to download the Windows
Phone Tailspin Surveys application.

There are several ways to connect the view model to the view,
including direct relations and data template relations. The developers
at Tailspin chose to use a view model locator because this approach
means that the application has a single class that is responsible for
connecting views to view models. This still leaves developers free to
choose to manually perform the connection within the view model
locator, or by using a dependency injection container. Figure 5 illus-
trates the relationships between the view, view model locator, and
container locator.

Tailspin adopted the view
model locator approach to
connecting the view to a
view model. This approach
works well for applications
with a limited number of
screens (which is often the
case with Windows Phone
applications), but is not
always appropriate in larger
applications.

Figure 5
Connecting the view to the view model

Inside the Implementation
The mobile client application uses a view model locator to connect
view models to views. The following code example from the App.xaml
file shows how the view model locator class is identified and made
available to the application. The application declares the TailSpin.
PhoneClient.ViewModels ViewModelLocator class in the <Applica-
tion.Resources> section of the App.xaml file.

ViewModelLocator
View

ContainerService

DataContext=”{Binding
Source={StaticResource

ViewModelLocator},
Path=SpecificViewModel}”

Property:
SpecificViewModel

Property: Container
Resolve<Specific

ViewModel>()

ViewModelLocator
View

ContainerService

DataContext=”{Binding
Source={StaticResource

ViewModelLocator},
Path=SpecificViewModel}”

Property:
SpecificViewModel

Property: Container
Resolve<Specific

ViewModel>()

ViewModelLocator
View

ContainerService

DataContext=”{Binding
Source={StaticResource

ViewModelLocator},
Path=SpecificViewModel}”

Property:
SpecificViewModel

Property: Container
Resolve<Specific

ViewModel>()

 29Building the Mobile Client

XAML
<Application
 x:Class="TailSpin.PhoneClient.App"
 ...
 xmlns:viewmodels=
 "clr-namespace:TailSpin.PhoneClient.ViewModels"
 ... >

 <!--Application Resources-->
 <Application.Resources>
 ...
 <viewmodels:ViewModelLocator x:Key="ViewModelLocator"/>
 ...
 </Application.Resources>
 ...
</Application>

The following code example from the SurveyListView.xaml file
shows how a view can then reference the ViewModelLocator class
as a static resource in its data context bindings.

XAML
<phone:PhoneApplicationPage
 x:Class="
 TailSpin.PhoneClient.Views.SurveyList.SurveyListView"
 ...
 DataContext=
 "{Binding Source={StaticResource ViewModelLocator},
 Path=SurveyListViewModel}"
 ...
 >
 ...
</phone:PhoneApplicationPage>

The Path attribute identifies the property of the ViewModel-
Locator instance that returns the view model associated with the
current page.

The following code example shows the parts of the ViewModel-
Locator class that return the SurveyListViewModel instance.

C#
public class ViewModelLocator : IDisposable
{
 private readonly ContainerLocator containerLocator;
 ...

 public SurveyListViewModel SurveyListViewModel

The ViewModelLocator class
connects view models to views.

30 chapter two

 {
 get
 {
 return this.containerLocator.Container
 .Resolve<SurveyListViewModel>();
 }
 }
}

Notice how the instance of the ContainerLocator class exposes
the Funq Container property to resolve the view model.

The ContainerLocator class is also responsible for instantiating
the store and passing it to the view model, which in turn passes it
on to the model.

Testing the Application
One of the benefits of combining the MVVM pattern with the depen-
dency injection pattern is that it promotes the testability of the ap-
plication, making it easy to create tests that exercise the view model.

Inside the Implementation
Tailspin uses the Silverlight unit test framework for Windows Phone
and Silverlight 4.

The Windows Phone project named Tailspin.PhoneClient.Tests
contains the unit tests for the Surveys mobile client application. To
run the tests, first build and then deploy this project either to the
Windows Phone emulator or to a real device. On the Windows Phone
device, you can now launch an application named Tailspin.Tests, and
then select the unit tests you want to run.

The following code example shows a unit test method from the
SurveyListViewModelFixture class that tests that the view model
returns a list of all the surveys that are marked as favorites.

C#
[TestMethod]
public void FavoritesSectionShowsFavoritedItems()
{
 var store = new SurveyStoreMock();
 var surveyStoreLocator = new SurveyStoreLocatorMock(store);
 store.Initialize();
 var allSurveys = store.GetSurveyTemplates();

 var vm = new SurveyListViewModel(surveyStoreLocator,
 new SurveysSynchronizationServiceMock(),
 new MockNavigationService(),

Tailspin uses a Silverlight
unit-testing framework to
run unit tests on the phone
emulator and on real devices.

Tailspin runs unit tests on
the emulator and on a real
device to make sure the test
behavior is not affected by
any behavioral differences
in the core libraries on the
phone as compared to the
emulator.

 31Building the Mobile Client

 new MockPhoneApplicationServiceFacade(),
 new MockShellTile(),
 new MockSettingsStore(),
 new MockLocationService());
 vm.Refresh();

 var favoriteSurveys =
 vm.FavoriteItems.Cast<SurveyTemplateViewModel>().ToList();
 CollectionAssert.AreEquivalent(
 allSurveys.Where(p => p.IsFavorite).ToArray(),
 favoriteSurveys.Select(t => t.Template).ToArray());
}

This method first instantiates a mock survey store and store loca-
tor objects to use in the test. The method then instantiates the view
model object from the Tailspin.PhoneClient project to test, passing in
the mock store locator object, along with other mock services. The
method then executes the test on the view model instance and veri-
fies that the favorite surveys in the view are the same as the ones in
the underlying database.

For more information about testing the application see Appen-
dix A, “Unit Testing Windows Phone Applications.”

Displaying Data
The application displays data by binding elements of the view to
properties in the view model. For example, the Pivot control on the
SurveyListView page binds to the SelectedPivotIndex property in the
SurveyListViewModel class.

The view can automatically update the values it displays in response
to changes in the underlying view model if the view model implements
the INotifyPropertyChanged interface. In the Tailspin mobile client,
the abstract ViewModel class inherits from the NotificationObject
class in the Prism Library. The NotificationObject class implements the
INotifyPropertyChanged interface. With the exception of the ques-
tion view models and the survey template view model, all the other
view model classes in the Tailspin mobile client application inherit
from the abstract ViewModel class. The application also uses the
ObservableCollection class from the System.Collections.Object-
Model namespace that also implements the INotifyPropertyChanged
interface.

To learn more about Prism, see the Prism CodePlex site and Prism
on MSDN.

The view model implements
the INotifyPropertyChanged
interface indirectly through
the NotificationObject class
from the Prism Library.

32 chapter two

Inside the Implementation
The following sections describe examples of data binding in the applica-
tion. The first section describes a simple scenario on the AppSettings-
View page, the next sections describe more complex examples using
Pivot controls, and the last section describes how Tailspin addressed an
issue with focus events on the phone.

Data Binding on the Settings Screen
The AppSettingsView page illustrates a simple scenario for binding a
view to a view model. On this screen, the controls on the screen must
display property values from the AppSettingsViewModel class, and
set the property values in the view model when the user edits the
settings values.

The following code example shows the DataContext attribute and
some of the control definitions in the AppSettingsView.xaml file. Tail-
spin chose to use the ToggleSwitch control in place of a standard
CheckBox control because it better conveys the idea of switching
something on and off instead of selecting something. The ToggleSwitch
control is part of the Microsoft Silverlight Windows Phone Toolkit
available on the Silverlight Toolkit CodePlex site.

XAML
<phone:PhoneApplicationPage
 x:Class="TailSpin.PhoneClient.Views.AppSettingsView"
 ...
 DataContext="{Binding Source={StaticResource ViewModelLocator},
 Path=AppSettingsViewModel}"
 ...>
...
<shell:SystemTray.ProgressIndicator>
 <shell:ProgressIndicator IsIndeterminate="True"
 IsVisible="{Binding IsSyncing}"
 Text="{Binding ProgressText}"/>
</shell:SystemTray.ProgressIndicator>
...
<TextBox Height="Auto" HorizontalAlignment="Stretch"
 Margin="0,28,0,0" Name="textBoxUsername"
 VerticalAlignment="Top" Width="Auto"
 Text="{Binding UserName, Mode=TwoWay}" Padding="0"
 BorderThickness="3">
 <i:Interaction.Behaviors>
 <prism:UpdateTextBindingOnPropertyChanged/>
 </i:Interaction.Behaviors>
</TextBox>

Define your data bindings
to the view model in the
view’s XAML.

 33Building the Mobile Client

...
<PasswordBox Height="Auto" HorizontalAlignment="Stretch"
 Margin="0,124,0,0" Name="passwordBoxPassword"
 VerticalAlignment="Top" Width="Auto"
 Password="{Binding Password, Mode=TwoWay}">
 <i:Interaction.Behaviors>
 <prism:UpdatePasswordBindingOnPropertyChanged/>
 </i:Interaction.Behaviors>
</PasswordBox>
...
<toolkit:ToggleSwitch Header="Subscribe to Push Notifications"
 Margin="0,202,0,0"
 IsChecked="{Binding SubscribeToPushNotifications, Mode=TwoWay}"
/>
...

If a view wants to update its view model, the binding mode must
be set to TwoWay. In order for the view model to notify the view of
updates, the view model must implement the INotifyPropertyChanged
interface. In the Tailspin client application, this interface is implement-
ed by the ViewModel class from which all the view models inherit. A
view model notifies a view of a changed property value by invoking the
RaisePropertyChanged method. The following code example shows
how the AppSettingsViewModel view model class notifies the view
that it should display the in-progress indicator to the user.

C#
public bool IsSyncing
{
 get { return this.isSyncing; }
 set
 {
 this.isSyncing = value;
 this.RaisePropertyChanged(() => this.IsSyncing);
 }
}

The default binding mode
value is OneWay, which
is the setting used by the
ProgressIndicator control.
You need to change this
to TwoWay if you want to
send the changes back to
the view model.

The RaisePropertyChanged method uses an expression for
compile-time verification. The Prism PropertySupport class
performs the translation of a lambda expression to a property name.

34 chapter two

The code for the AppSettingsView page illustrates a solution to a common issue in Silverlight for
the Windows Phone platform. By default, the view does not notify the view model of property value
changes until the control loses focus. For example, if the user enters a value in a control and then
causes the control to lose focus, the view model will be updated. However, if the user enters a value
in a control and then interacts with any ApplicationBarButton elements, the focus lost event will not
be fired. For example, new content in the textBoxUserName control is lost if the user tries to save
the settings before moving to another control. The UpdateTextBindingOnPropertyChanged behav-
ior from the Prism Library ensures that the view always notifies the view model of any changes in the
TextBox control as soon as they happen. The UpdatePasswordBindingOnPropertyChanged behav-
ior does the same for the PasswordBox control. For more information, see the section, “Handling
Focus Events,” later in this chapter.

Data Binding and the Pivot Control
The application uses the Pivot control to allow the user to view different filtered lists of surveys. Figure
6 shows the components in the mobile client application that relate to the Pivot control as it’s used on
the SurveyListView page.

Figure 6
Using the Pivot control on the SurveyListView page

SurveyListView.xaml

PivotControl control

PivotItem coPivotItem control

ListBox control ListBox co

Binding

Binding

SurveyListViewModel class

ViewModelLocator class

SelectedPivotIndex property

SurveyListViewModel property

ICollectionView properties for ListBox control
bindings

NewItems property
FavoriteItems property
ByLengthItems property

View View Model

DataContext

 35Building the Mobile Client

The following code example shows how the Pivot control on the SurveyListView page binds to
the SelectedPivotIndex property of the SurveyListViewModel instance. This two-way binding de-
termines which PivotItem control, and therefore which list of surveys, is displayed on the page. Re-
member, the ViewModelLocator class is responsible for locating the correct view model for a view.

XAML
<phoneControls:Pivot
 Title="TAILSPIN SURVEYS"
 Name="homePivot"
 SelectedIndex="{Binding SelectedPivotIndex, Mode=TwoWay}"
 Visibility="{Binding SettingAreConfigured,
 Converter={StaticResource VisibilityConverter}}">
 ...
</phoneControls:PivotControl>

The following code example shows the definition of the PivotItem control that holds a list of new
surveys; it also shows how the ListBox control binds to the NewItems property in the view model.

XAML
<phoneControls:PivotItem Header="new">
 <Grid>
 <ContentControl Template="{StaticResource NoItemsTextBlock}"
 Visibility="{Binding NewItems.IsEmpty,
 Converter={StaticResource VisibilityConverter}}" />
 <ListBox ItemsSource="{Binding NewItems}"
 Style="{StaticResource SurveyTemplateItemStyle}"
 Visibility="{Binding NewItems.IsEmpty,
 Converter={StaticResource NegativeVisibilityConverter}}" >
 </ListBox>
 </Grid>
</phoneControls:PivotItem>

In the list, the layout and formatting of each survey’s information is handled by the SurveyTemplate-
ItemStyle style and the SurveyDataTemplate data template in the Styles.xaml file.

The SurveyListViewModel class uses CollectionViewSource objects to hold the list of surveys
to display in the list on each PivotItem control. This allows the view model to notice and to react to
changes in the item selected in the view, without needing to know about the view itself. The follow-
ing code example shows how the SurveyListViewModel class defines the properties that the ListBox
controls bind to.

36 chapter two

C#
private CollectionViewSource newSurveysViewSource;
private CollectionViewSource byLengthViewSource;
private CollectionViewSource favoritesViewSource;
...
public ICollectionView NewItems
{
 get { return this.newSurveysViewSource.View; }
}

public ICollectionView FavoriteItems
{
 get { return this.favoritesViewSource.View; }
}

public ICollectionView ByLengthItems
{
 get { return this.byLengthViewSource.View; }
}

The following code example shows how the BuildPivotDimensions method populates the
CollectionViewSource objects. In this example, to save space, only the code that populates the
newSurveysViewSource property is shown.

C#
private void BuildPivotDimensions()
{
 ...
 this.ObservableSurveyTemplates =
 new ObservableCollection<SurveyTemplateViewModel>();
 List<SurveyTemplateViewModel> surveyTemplateViewModels =
 this.surveyStoreLocator.GetStore().GetSurveyTemplates()
 .Select(t => new SurveyTemplateViewModel(t,
 this.NavigationService,
 this.PhoneApplicationServiceFacade,
 this.shellTile,
 this.locationService)
 {
 CompletedAnswers = this.surveyStoreLocator.GetStore()
 .GetCurrentAnswerForTemplate(t) != null
 ? this.surveyStoreLocator.GetStore()
 .GetCurrentAnswerForTemplate(t).CompletedAnswers
 : 0,

 37Building the Mobile Client

 Completeness = this.surveyStoreLocator.GetStore()
 .GetCurrentAnswerForTemplate(t) != null
 ? this.surveyStoreLocator.GetStore()
 .GetCurrentAnswerForTemplate(t).CompletenessPercentage
 : 0,
 CanTakeSurvey = () => !IsSynchronizing
 }).ToList();
 surveyTemplateViewModels.ForEach(
 this.observableSurveyTemplates.Add);
 ...
 this.newSurveysViewSource = new CollectionViewSource
 { Source = this.observableSurveyTemplates };
 ...

 this.newSurveysViewSource.Filter +=
 (o, e) => e.Accepted =
 ((SurveyTemplateViewModel)e.Item).Template.IsNew;
 ...

 this.newSurveysViewSource.View.CurrentChanged +=
 (o, e) => this.SelectedSurveyTemplate =
 (SurveyTemplateViewModel)this.newSurveysViewSource
 .View.CurrentItem;
 ...

 // Initialize the selected survey template.
 this.HandleCurrentSectionChanged();
 ...
}

This method creates an ObservableCollection collection of
SurveyTemplateViewModel objects. Each SurveyTemplateView-
Model object holds a complete definition of a survey, its questions,
and its answers. The method then assigns this collection to the
Source property of each CollectionViewSource object. Next, the
method applies a filter or a sort to each CollectionViewSource ob-
ject so that it displays the correct set of surveys. The method then
attaches an event handler to the CurrentChanged event of the view
in each CollectionViewSource object so that the SelectedSurvey-
Template property of the SurveyListViewModel object is updated
correctly. Finally, the method calls the HandleCurrentSection-
Changed method that causes the view model to set the selected
survey to the value of the SelectedSurveyTemplate property.

The ObservableCollection
class provides notifications
when the collection is
modified. This means the
view automatically updates
through the bindings when
the data changes.

38 chapter two

The application also uses the Pivot control to display survey questions. This enables the user to
scroll left and right through the questions as if the questions are all on a single large page of which the
phone’s screen shows a small portion.

Figure 7 shows how the Pivot control’s binding works on the TakeSurveyView page.

Figure 7
Using the Pivot Control on the TakeSurveyView page

TakeSurveyView.xaml

Pivot control

Pivot.ItemTemplate *

OpenQuestionView.xaml

TextBox control

Binding

Binding

DataContext

View View Model

AnswerText property

VoiceQuestionViewModel class

PictureQuestionViewModel class

MultipleChoiceQuestionViewModel class

OpenQuestionViewModel class

* The Pivot.ItemTemplate uses the DataTemplateSelector content selector class from the Prism Library to display the correct view
based on the question type. The possible views are: FiveStarsQuestionView, MultipleChoiceQuestionView, OpenQuestionView,
PictureQuestionView, and VoiceQuestionView.

Selected Survey
Template

TakeSurveyViewModel class

Questions property

ViewModelLocator class

TakeSurveyViewModelproperty

 39Building the Mobile Client

As in the previous examples, the view uses the ViewModelLocator class to create the view
model. The following code example shows how the ViewModelLocator object instantiates a Take-
SurveyViewModel object.

C#
public TakeSurveyViewModel TakeSurveyViewModel
{
 get
 {
 var vm = new TakeSurveyViewModel(
 (
 this.containerLocator.Container
 .Resolve<INavigationService>(),
 this.containerLocator.Container
 .Resolve<IPhoneApplicationServiceFacade>(),
 this.containerLocator.Container
 .Resolve<ILocationService>(),
 this.containerLocator.Container
 .Resolve<ISurveyStoreLocator>(),
 this.containerLocator.Container
 .Resolve<IShellTile>()
);

 return vm;
 }
}

The Pivot control binds to the Questions property of the TakeSurveyViewModel class and a
Pivot.ItemTemplate template controls the display of each question in the survey. However, it’s neces-
sary to display different question types using different layouts. The following code example from the
TakeSurveyView.xaml file shows how the data binding and view layout is defined for the Pivot control
using the DataTemplate-Selector content selector class from the Prism Library.

XAML
<phoneControls:Pivot
 SelectionChanged="PivotSelectionChanged"
 Loaded="ControlLoaded"
 VerticalAlignment="Top"
 Name="questionsPivot" Margin="0,0,0,0"
 ItemsSource="{Binding Questions}">
 <phoneControls:Pivot.ItemTemplate>
 <DataTemplate>
 <ScrollViewer>
 <prismViewModel:DataTemplateSelector Content="{Binding}"
 Grid.Row="0" VerticalAlignment="Top"
 HorizontalContentAlignment="Left" IsTabStop="False">
 <prismViewModel:DataTemplateSelector.Resources>

40 chapter two

 <DataTemplate x:Key="OpenQuestionViewModel">
 <Views:OpenQuestionView DataContext="{Binding}"/>
 </DataTemplate>
 <DataTemplate x:Key="MultipleChoiceQuestionViewModel">
 <Views:MultipleChoiceQuestionView DataContext="{Binding}"/>
 </DataTemplate>
 ...
 </prismViewModel:DataTemplateSelector.Resources>
 </prismViewModel:DataTemplateSelector>
 </ScrollViewer>
 </DataTemplate>
 </phoneControls:Pivot.ItemTemplate>
 <phoneControls:Pivot.HeaderTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Title}"/>
 </DataTemplate>
 </phoneControls:Pivot.HeaderTemplate>
</phoneControls:Pivot>

You’ ll notice that the XAML declares handlers for the SelectionChanged and Loaded events in
the code-behind. For an explanation of why the developers at Tailspin used code-behind here, see
the section, “Handling Activation and Deactivation,” in Chapter 3, “Using Services on the Phone.”
The code-behind also contains a workaround method to trim long titles that don’t always display
correctly when the user scrolls in the Pivot control.

Each question view on the Pivot control binds to a view model object in the list of questions held
in the Questions property of the TakeSurveyViewModel class. For example, an OpenQuestionView
view binds to an OpenQuestionViewModel object, and a VoiceQuestionView view binds to a Voice-
QuestionViewModel object. The following code example shows how the TakeSurveyViewModel
class builds this list of question view models.

C#
public IList<QuestionViewModel> Questions { get; set; }
...
public void Initialize(ISurveyStoreLocator surveyStoreLocator)
{
 ...
 this.Questions = this.SurveyAnswer.Answers.Select(
 a => Maps[a.QuestionType].Invoke(a)).ToArray();
}

 41Building the Mobile Client

The following code sample shows the definition of the Maps property in the TakeSurveyView-
Model. The Maps property maps question types to view models.

C#
private static readonly
 Dictionary<QuestionType, Func<QuestionAnswer,
 QuestionViewModel>> Maps =
 new Dictionary<QuestionType, Func<QuestionAnswer,
 QuestionViewModel>>()
 {
 { QuestionType.SimpleText,
 a => new OpenQuestionViewModel(a) },
 { QuestionType.MultipleChoice,
 a => new MultipleChoiceQuestionViewModel(a) },
 ...
 };

Handling Focus Events
The file OpenQuestionView.xaml defines the UI for entering survey results. Tailspin found that when
the user clicked the Save button, the last answer wasn’t saved by the view model. This is because
ApplicationBarIconButton control is not a FrameworkElement control, so it cannot get the focus.
As a result, the lost focus event on the text box wasn’t being raised; as a result, the bindings didn’t tell
the view model about the new field contents.

To solve this problem, the developers at Tailspin used a behavior named UpdateTextBindingOn-
PropertyChanged from the Prism Library. This behavior ensures that the view notifies the view
model whenever the user changes the text in the TextBox control, not just when the control loses
focus. The following code example shows how this behavior is defined in OpenQuestionView.xaml.

XAML
...
xmlns:prism=
"clr-namespace:Microsoft.Practices.Prism.Interactivity;
assembly=Microsoft.Practices.Prism.Interactivity"
...
<TextBox Text="{Binding AnswerText, Mode=TwoWay}" Height="100">
 <Interactivity:Interaction.Behaviors>
 <prism:UpdateTextBindingOnPropertyChanged/>
 </Interactivity:Interaction.Behaviors>
</TextBox>

42 chapter two

Commands
In a Silverlight application, you can invoke some action in response to
a user action (such as a button click) by creating an event handler in
the code-behind class. However, in the MVVM pattern, the responsi-
bility for implementing the action lies with the view model, and you
should avoid placing code in the code-behind classes. Therefore, you
should connect the control to a method in the view model using a
command binding.

In Silverlight 4, the ButtonBase class and the Hyperlink class
both support Command and CommandParameter properties. The
Command property can reference an ICommand implementation that
comes from a view model data source, through a binding. The com-
mand is then interpreted at runtime by the Silverlight input system.
For more information, see “ButtonBase.Command Property” on MSDN
and “Hyperlink.Command Property” on MSDN.

However, because the ApplicationBarIconButton class is not a
control, Tailspin uses the ApplicationBarButtonCommand behavior
from the Prism Library to bind the click event of the ApplicationBar-
ButtonCommand to the execution of a command.

For more information about the ICommand interface, see
“ICommand Interface” on MSDN.

Inside the Implementation
The developers at Tailspin use bindings to associate actions in the UI
with commands in the view model. However, you cannot use the
InvokeCommandAction Expression Blend behavior with the
ApplicationBarIconButton or ApplicationBarMenuItems controls
because they cannot have dependency properties. Tailspin uses a
custom behavior to connect commands to the view model.

The following code example from the SurveyListView page shows
how the Synchronize button, the Settings button, and the Filter but-
ton on the application bar are associated with commands. In addition,
it shows how the About menu item on the application bar is associ-
ated with an event handler for the Click event.

XAML
<phoneNavigation:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True">
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem
 Text="about"
 Click="AboutMenuItem_Click"/>
 </shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarIconButton Text="Sync" IconUri="..." />
 <shell:ApplicationBarIconButton Text="Settings"
 IconUri="..." />

To keep the responsibilities
of the view and view model
separate, you should try
to avoid placing code in
the code-behind files of
your views when you are
implementing the MVVM
pattern.

Windows Phone controls that
derive from ButtonBase or
Hyperlink support binding to
ICommand instances.

 43Building the Mobile Client

 <shell:ApplicationBarIconButton Text="Filters" IconUri="..."/>
 </shell:ApplicationBar>
</phoneNavigation:PhoneApplicationPage.ApplicationBar>
 ...
<Custom:Interaction.Behaviors>
 <prismInteractivity:ApplicationBarButtonCommand
 ButtonText="Sync"
 CommandBinding="{Binding StartSyncCommand}"/>
 <prismInteractivity:ApplicationBarButtonCommand
 ButtonText="Settings"
 CommandBinding="{Binding AppSettingsCommand}" />
 <prismInteractivity:ApplicationBarButtonCommand
 ButtonText="Filters"
 CommandBinding="{Binding FiltersCommand}" />
</Custom:Interaction.Behaviors>

The attributes attached to the ApplicationBarIconButton controls (Text and IconUri) only af-
fect their appearance. The ApplicationBarButtonCommand elements handle the connection to the
commands; they identify the control to associate with the command through the ButtonText attri-
bute and the command through the CommandBinding attribute.

The ApplicationBarButtonCommand class from the Prism Library implements the custom be-
havior that links a button click in the UI to the StartSyncCommand, AppSettingsCommand, and
FiltersCommand properties in the SurveyListViewModel class.

The StartSyncCommand property uses an instance of the DelegateCommand class that imple-
ments the ICommand interface. The following code example from the SurveyListViewModel class
shows the definition of the StartSyncCommand property.

C#
public DelegateCommand StartSyncCommand { get; set; }
...
public SurveyListViewModel(...) : base(...)
{
 ...
 this.StartSyncCommand = new DelegateCommand(
 this.StartSync,
 () => !this.IsSynchronizing &&
 !this.SettingAreNotConfigured);
 ...
}

For more information about the DelegateCommand class from Prism, see Chapter 9
of the Prism documentation, “Communicating Between Loosely Coupled Compo-
nents” on MSDN.

44 chapter two

The following code example from the SurveyListViewModel class shows the implementation of
the StartSync method and SyncCompleted method. The StartSync method runs the synchronization
process asynchronously by invoking the StartSynchronization method. It also uses the ObserveOn-
Dispatcher method from the Reactive Extensions (Rx) for .NET. For more information about how
Tailspin uses Rx, see Chapter 3, “Using Services on the Phone.”

C#
public void StartSync()
{
 if (this.IsSynchronizing)
 {
 return;
 }

 this.IsSynchronizing = true;
 this.synchronizationService
 .StartSynchronization()
 .ObserveOnDispatcher()
 .Subscribe(this.SyncCompleted);
}

private void SyncCompleted(
 IEnumerable<TaskCompletedSummary> taskSummaries)
{
 ...
 this.BuildPivotDimensions();
 this.IsSynchronizing = false;
 this.UpdateCommandsForSync();
}

The SyncCompleted method also updates the UI to show the new list of surveys following the
synchronization process; it also controls the progress indicator in the UI by setting the IsSynchronizing
property. The UpdateCommandsForSync method disables the Synchronize button in the UI while the
synchronization is running.

Handling Navigation Requests
In addition to invoking commands from the view, the Tailspin mobile client also triggers navigation
requests from the view. These requests could be to navigate to a particular view or navigate back to
the previous view. In some scenarios, for example if the application needs to navigate to a new view
when a command completes, the view model will need to send a message to the view. In other sce-
narios, you might want to trigger the navigation request directly from the view without involving the
view model directly. When you’re using the MVVM pattern, you want to be able to do all this without
using any code-behind in the view, and without introducing any dependency on the view implementa-
tion in the view model classes.

 45Building the Mobile Client

Inside the Implementation
The following code example from the FilterSettingsView.xaml file shows how navigation is initiated
in the sample application.

XAML
<i:Interaction.Behaviors>
 <prismInteractivity:ApplicationBarButtonCommand
 ButtonText="Save" CommandBinding="{Binding SaveCommand}"/>
 <prismInteractivity:ApplicationBarButtonCommand
 ButtonText="Cancel" CommandBinding="{Binding CancelCommand}" />
</i:Interaction.Behaviors>

In both cases, commands are invoked in the view model. The code that implements each command
causes the application to navigate back to the previous view if the command succeeds, so the naviga-
tion is initiated from the view model. The following code example from the FilterSettingsView-
Model class illustrates this.

C#
public DelegateCommand SaveCommand { get; set; }
public DelegateCommand CancelCommand { get; set; }
...
public FilterSettingsViewModel(...)
{
 ...
 this.SaveCommand =
 new DelegateCommand(this.Submit, () => !this.CanSubmit);
 this.CancelCommand =
 new DelegateCommand(this.Cancel, () => true);
 ...
}

public bool CanSubmit
{
 get { return this.canSubmit; }
 set
 {
 if (!value.Equals(this.canSubmit))
 {
 this.canSubmit = value;
 this.RaisePropertyChanged(() => this.CanSubmit);
 this.SaveCommand.RaiseCanExecuteChanged();
 }
 }
}
...
public void Submit()

46 chapter two

{
 ...
 if (this.NavigationService.CanGoBack) this.NavigationService.GoBack();
 ...
}

public void Cancel()
{
 if (this.NavigationService.CanGoBack) this.NavigationService.GoBack();
}

public override void OnPageDeactivation(bool isIntentionalNavigation)
{
 base.OnPageDeactivation(isIntentionalNavigation);

 if (isIntentionalNavigation)
 {
 this.Dispose();
 return;
 }
 ...
}
...

The OnPageDeactivation method is called by the PhoneApplicationFrame Navigating event
when the page is intentionally or unintentionally navigated away from. The isIntentionalNavigation
parameter indicates whether the current application is both the origin and destination of the naviga-
tion. Therefore, when navigating to another page in the application, the Dispose method of the base
ViewModel class will be called in order to dispose of the instance of the FilterSettingsViewModel,
provided that the navigation is intentional. For more information about the PhoneApplicationFrame
Navigating event, see the section, “Handling Activation and Deactivation” in Chapter 3, “Using Ser-
vice on the Phone.”

Navigation is performed using the ApplicationFrameNavigationService class, from the TailSpin.
Phone-Client.Adapters project, which is shown in the following code example.

C#
public class ApplicationFrameNavigationService :
 INavigationService
{
 private readonly PhoneApplicationFrame frame;
 private Dictionary<string, bool> tombstonedPages;

 public ApplicationFrameNavigationService(
 PhoneApplicationFrame frame)

 47Building the Mobile Client

 {
 this.frame = frame;
 this.frame.Navigated += frame_Navigated;
 this.frame.Navigating += frame_Navigating;
 this.frame.Obscured += frame_Obscured;
 this.RecoveredFromTombstoning = false;
 }

 public bool CanGoBack
 {
 get { return this.frame.CanGoBack; }
 }

 public bool RecoveredFromTombstoning { get; set; }

 public bool DoesPageNeedtoRecoverFromTombstoning(Uri pageUri)
 {
 if (!RecoveredFromTombstoning) return false;

 if (tombstonedPages == null)
 {
 tombstonedPages = new Dictionary<string, bool>();
 tombstonedPages.Add(pageUri.ToString(), true);
 foreach (var journalEntry in frame.BackStack)
 {
 tombstonedPages.Add(journalEntry.Source.ToString(), true);
 }
 return true;
 }

 if (tombstonedPages.ContainsKey(pageUri.ToString()))
 {
 return tombstonedPages[pageUri.ToString()];
 }
 return false;
 }

 public void UpdateTombstonedPageTracking(Uri pageUri)
 {
 tombstonedPages[pageUri.ToString()] = false;
 }

48 chapter two

 public bool Navigate(Uri source)
 {
 return this.frame.Navigate(source);
 }

 public void GoBack()
 {
 this.frame.GoBack();
 }

 public event NavigatedEventHandler Navigated;

 void frame_Navigated(object sender, NavigationEventArgs e)
 {
 var handler = this.Navigated;
 if (handler != null)
 {
 handler(sender, e);
 }
 }

 public event NavigatingCancelEventHandler Navigating;

 void frame_Navigating(object sender, NavigatingCancelEventArgs e)
 {
 var handler = this.Navigating;
 if (handler != null)
 {
 handler(sender, e);
 }
 }

 public event EventHandler<ObscuredEventArgs> Obscured;

 void frame_Obscured(object sender, ObscuredEventArgs e)
 {
 var handler = this.Obscured;
 if (handler != null)
 {
 handler(sender, e);
 }
 }
}

 49Building the Mobile Client

This class, which implements Tailspin’s INavigationService inter-
face, uses the phone’s PhoneApplicationFrame instance to perform
the navigation request for the application.

A view model can invoke the Navigate method on the Application-
FrameNavigationService object to cause the application to navigate to
a particular view in the application or the GoBack method to return to
the previous view.

The ViewModel base class maintains the INavigationService
instance for all the view models, and the Funq dependency injection
container is responsible for initially creating the Application-
FrameNavigationService object that implements this interface.

To avoid any code-behind in the view when the view initiates the
navigation, the developers at Tailspin use an interaction behavior from
the Prism Library. The following code example shows how the Cancel
button is declared in the FilterSettingsView.xaml file.

XAML
<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar ...>
 ...
 <shell:ApplicationBarIconButton Text="Cancel" IconUri="..."/>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>
...
<i:Interaction.Behaviors>
 ...
 <prismInteractivity:ApplicationBarButtonCommand
 ButtonText="Cancel"
 CommandBinding="{Binding CancelCommand}" />
</i:Interaction.Behaviors>

User Interface Notifications
The Tailspin Surveys mobile client application performs some tasks
asynchronously; one example is the potentially time-consuming syn-
chronization with the Tailspin Surveys web service. Asynchronous
tasks must often inform the user of the outcome of the task or pro-
vide status information while they’re running. It’s important to con-
sider the usability of the application when you’re deciding on the ap-
propriate way to notify users of significant events or to provide status
information. The developers at Tailspin were concerned they would
either flood the user with alerts or have the user miss an important
piece of information.

For the Tailspin Surveys mobile client application, the developers
identified two categories of notification, informational/warning noti-
fications and error notifications.

By using a behavior, Tailspin
avoids having any code
in the view to handle
navigation requests. This
general pattern is how the
view model can handle
requests from the view
without using “classic”
events that require handlers
in code-behind.

Using the
PhoneApplicationFrame
instance ensures that the
phone maintains the correct
navigation stack for the
application so that navigating
backward works the way
users expect.

50 chapter two

Informational/Warning Notifications
Informational or warning notifications should not be disruptive, so the
user should see the message but not be interrupted in their current
task. The user does not need to perform any action in response to this
type of message; the Tailspin mobile client application uses this type
of notification to inform the user when a synchronization completes
successfully, for example. Tailspin uses a custom toast notification for
these messages because the application does not have access to the
Windows Phone toast notification system.

Error Notifications
Error notifications should be disruptive because the message is in-
forming the user that some expected action of the application will not
happen. The notification should inform the user of the actions they
need to take to resolve the problem; for example, to retry the syn-
chronization operation again if it fails for some reason. Tailspin uses
message boxes for this type of message.

Inside the Implementation
This example shows how Tailspin implements custom toast notifica-
tions and error notifications on the SurveyListView page to inform
users when the synchronization process finishes or fails. In the sample
application, many of the notifications and error messages are not in-
tended for the imaginary user of the sample; instead, they are there to
help you, the developer understand what the application is doing as
you explore its functionality. You should follow the guidance pub-
lished in the User Experience Design Guidelines for Windows Phone
when you design the user notification system for your application.

The following code example shows the relevant declarations in
the SurveyListView.xaml file.

XAML
<Custom:EventTrigger
 SourceObject="{Binding SubmitNotificationInteractionRequest}"
 EventName="Raised">
 <prismInteractionRequest:ToastPopupAction PopupElementName=
 "SynchronizationToast" />
</Custom:EventTrigger>

<Custom:EventTrigger
 SourceObject="{Binding SubmitErrorInteractionRequest}"
 EventName="Raised">
 <prismInteractionRequest:MessageBoxAction />
</Custom:EventTrigger>
...

Tailspin implemented a
custom toast notification
system.

 51Building the Mobile Client

<Popup x:Name="SynchronizationToast" DataContext="">
 <Grid x:Name="grid" Background="{StaticResource PhoneAccentBrush}"
 VerticalAlignment="Bottom" Width="480">
 <TextBlock Text="{Binding Title}"
 HorizontalAlignment="Stretch"
 Foreground="{StaticResource PhoneForegroundBrush}"
 TextWrapping="Wrap" Margin="14,5,14,5">
 <Custom:Interaction.Behaviors>
 <pag:PopupHideOnLeftMouseUp/>
 </Custom:Interaction.Behaviors>
 </TextBlock>
 </Grid>
</Popup>

The view model uses the SubmitNotificationInteractionRequest binding to trigger the toast
notification and the SubmitErrorInteractionRequest binding to trigger the error message notifica-
tion. The following code example shows how the SurveyListViewModel displays a toast notification
when the synchronization process completes successfully and an error message when it fails.

C#
private readonly InteractionRequest
 <InteractionRequest.Notification> submitErrorInteractionRequest;
private readonly InteractionRequest
 <InteractionRequest.Notification> submitNotificationInteractionRequest;
...
public IInteractionRequest SubmitErrorInteractionRequest
{
 get { return this.submitErrorInteractionRequest; }
}

public IInteractionRequest SubmitNotificationInteractionRequest
{
 get { return this.submitNotificationInteractionRequest; }
}
...
private void SyncCompleted(
 IEnumerable<TaskCompletedSummary> taskSummaries)
{
 ...
 if (taskSummaries.Any(
 t => t.Result != TaskSummaryResult.Success))
 {
 this.submitErrorInteractionRequest.Raise(
 new InteractionRequest.Notification
 {

52 chapter two

 Title = "Synchronization error",
 Content = stringBuilder.ToString()
 },
 n => { });
 }
 else
 {
 this.submitNotificationInteractionRequest.Raise(
 new InteractionRequest.Notification
 {
 Title = stringBuilder.ToString(),
 Content = null
 },
 n => { });
 }
 ...
}

This solution uses the InteractionRequest and Notification classes and two trigger actions,
MessageBoxAction and ToastPopupAction, from the Prism Library.

Accessing Services
The MVVM pattern identifies three major components: the view, the view model, and the model. This
chapter describes the UI of the Tailspin Surveys mobile client application and the way that Tailspin
uses the MVVM pattern. The Tailspin mobile client application also includes a number of services.
These services can be invoked from the view, view model, or model components and include services
that do the following:

•	 Manage the settings and surveys stores that handle data persistence for the application.
•	 Save and load the application’s state when it’s activated and deactivated.
•	 Synchronize survey data between the client application and the Tailspin Surveys web

application.
•	 Notify the application when new surveys are available.
•	 Encode audio data, and support application navigation and other infrastructure services.
These services are discussed in the following chapters. Chapter 3, “Using Services on the Phone,”

describes how the application uses services offered by the Windows Phone platform, such as local
data persistence services and geo-location services. Chapter 4, “Connecting with Services,” describes
how the mobile client application accesses services over the network.

Conclusion
This chapter described how the developers at Tailspin built the UI components of the application, and
how and why the MVVM pattern was implemented. The next chapter will describe how the develop-
ers at Tailspin implemented the model elements from the MVVM pattern in the mobile client applica-
tion, and how the application leverages services offered by the Windows Phone platform, such as
isolated storage, background agents, and location services.

 53Building the Mobile Client

Questions
1. Which of the following are good reasons to use the MVVM pattern for your Windows Phone

application?

a. It improves the testability of your application.
b. It facilitates porting of the application to another platform, such as the desktop.
c. It helps to make it possible for designers and developers to work in parallel.
d. It may help you avoid risky changes to existing model classes.

2. Which of the following are good reasons not to use the MVVM pattern for your Windows
Phone application?

a. You have a very tight deadline to release the application.
b. Your application is relatively simple with only two screens and no complex logic to

implement.
c. Windows Phone controls are not ideally suited to the MVVM pattern.
d. It’s unlikely that your application will be used for more than six months before it is

completely replaced.

3. Which of the following are correct about tombstoning?

a. Tombstoned applications have been terminated.
b. Tombstoned applications remain intact in memory.
c. Information about a tombstoned application’s navigation state and state dictionaries

are preserved for when the application is relaunched.
d. A device will maintain tombstoning information for up to five applications at once.

4. Which of the following describe the role of the view model locator?

a. The view model locator configures bindings in the MVVM pattern.
b. In the Tailspin mobile client, the view model locator is responsible for instantiating

view-model objects.
c. The view model locator connects views to view models.
d. Data template relations offer an alternative approach to a view model locator.

5. Where does the Back button take you?

a. To the previous view in the navigation stack.
b. It depends on what the code in the view model does.
c. If the current view is the last one in the navigation stack, you leave the application.
d. If your application is on the top of the phone’s application stack, it takes you back to

your application.

54 chapter two

6. Why should you not use code-behind when you’re using the MVVM pattern?

a. The view model locator always intercepts the events, so code-behind code never
executes.

b. The MVVM pattern enforces a separation of responsibilities between the view and the
view model. UI logic belongs in the view model.

c. If you are using the MVVM pattern, other developers will expect to see your code in
the view model classes and not in the code-behind.

d. Code-behind has a negative effect on view performance.

More Information
For more information about designing a Windows Phone UI, see “Themes for Windows Phone” on
MSDN.
For more information about the Pivot control, see “Pivot Control for Windows Phone” on MSDN.
For more information about navigation on the Windows Phone platform, see “Frame and Page
Navigation for Windows Phone” on MSDN.
For more information about Prism and MVVM see the Prism CodePlex site and “Prism” on MSDN.
These and all links in this book are accessible from the book’s online bibliography. You can find the
bibliography on MSDN at: http://msdn.microsoft.com/en-us/library/gg490786.aspx.

 55

3 Using Services on the Phone

This chapter describes how the Tailspin mobile client uses services
offered by the Windows® Phone platform. The chapter begins by
describing the various model classes used in the application to repre-
sent data within the application. The view model classes described in
Chapter 2, “Building the Mobile Client,” make extensive use of these
model classes as they manage the data displayed and created in the
user interface (UI). This chapter focuses on how the mobile client
application uses the isolated storage service on the phone to persist
this data, and how the application can populate these model classes
with previously saved data. The chapter also discusses issues that re-
late to data security on the phone.

When the Windows Phone operating system deactivates an ap-
plication, it’s the application’s responsibility to persist enough state
information to be able to restore the state of the application if and
when it’s reactivated by the operating system. This chapter describes
how the Tailspin mobile client uses the services offered by the phone
to support this behavior.

The mobile client application can also send and receive data from
the Tailspin cloud service, and this chapter describes how the applica-
tion synchronizes data between the phone and the cloud. The focus
of this chapter is the way that the mobile client application can use
services on the phone to help it run the synchronization tasks both in
the background and in the foreground.

The chapter also describes how the mobile client application uses
other services to pin tiles to Start, and to acquire geo-location data,
image data, and audio data.

The Model Classes
Chapter 2, “Building the Mobile Client,” described the Model-View-
ViewModel (MVVM) pattern adopted by the developers at Tailspin.
This chapter relates to the model elements of this pattern, contained
in the TailSpin.PhoneServices project, that represent the domain enti-
ties used in the application. Figure 1 shows the key model classes and
the relationships between them.

Model classes represent
domain entities in the
Model-View-ViewModel
pattern.

56 chapter three

Figure 1
The model classes in the Tailspin mobile client application

Isolated storage is the only
mechanism available to persist
application data on the
Windows Phone platform.
When an application uses
a local database, it resides
in the application’s isolated
storage container.

Using Isolated Storage on the Phone
The mobile client application must be able to operate when there is no
available network connection. Therefore, it must be able to store sur-
vey definitions and survey answers locally on the device, together with
any other data or settings that the application requires to operate.

The application must behave as a “good citizen” on the device. It
is not possible to access another application’s isolated storage or ac-
cess the file system directly on the Windows Phone platform, so the
application cannot compromise another application by reading or
modifying its data. However, there is a limited amount of storage
available on the phone, so Tailspin tries to minimize the amount of
data that the mobile client application stores locally and be proactive
about removing unused data.

The Tailspin mobile client application must adopt a robust storage
solution and minimize the risk of losing any stored data.

SurveyTemplate
Class

Properties
Completeness
CreatedOn
IconUrl
IsFavorite
IsLocal
IsNew
Length
SlugName
Tenant
Title

Class
SurveyAnswer

CompletedAnswers
CompleteLocation
CompletenessPercentage
IsComplete
SlugName
StartLocation
Tenant
Title

SurveyFiltersInformation
Class

TenantItem
Class

Properties

Properties

Properties

IncludeInFilter
Key
Name

QuestionAnswer
QuestionTypeClass

NotificationsObject

PossibleAnswers
QuestionText
Value

Enum

SimpleText
MultipleChoice
FiveStars
Picture
Voice

Question
Class

Properties

PossibleAnswers
Text
Type

QuestionOption
Class

Properties
PossibleAnswers
Text

Represents a survey and
its questions

Represents the question
options for a multiple
choice questionQuestions

Represents a set of
answers to a survey

Answers

SelectedTenants

AllTenants

Represents the filtered list
of surveys

QuestionType

NotificationsObject

 57Using Services on the Phone

Overview of the Solution
The Windows Phone platform offers isolated storage functionality.
Isolated storage provides a dictionary-based model for storing appli-
cation settings, enables the application to create folders and files that
are private to the application, and can store relational data in a local
database by using LINQ to SQL.

Figure 2 shows how each application on a Windows Phone device
only has access to its own private storage on the device, and cannot
access the storage belonging to other applications.

To be a “good citizen” on
the phone, your application
should minimize the
amount of isolated storage
it uses. There’s nothing on
the phone that enforces
any quotas, it’s your
responsibility.

It is the application’s
responsibility to manage
the amount of storage it
uses by deleting temporary
or unused data because the
operating system does not
enforce any quota limits.
Tailspin removes completed
surveys from isolated
storage after they are
synchronized to the Tailspin
Surveys service.

Figure 2
Isolated storage on the Windows Phone platform

Windows Phone
Device

Application
A

Application
B

Application
C

Isolated storage for
Application A

Isolated storage for
Application C

Is
ol

at
ed

 s
to

ra
ge

 fo
r

A
pp

lic
at

io
n

B

D
ev

ic
e

St
or

ag
e

58 chapter three

Security
Tailspin does not encrypt the survey data that the mobile client ap-
plication stores in isolated storage because it does not consider that
data to be confidential. However, Tailspin does encrypt user pass-
words before storing them in isolated storage.

The sample application stores user passwords as encrypted text in
isolated storage.

There are two scenarios to think about when you are implement-
ing security for data stored on the phone. The first is whether other
applications on the phone could potentially access your application’s
data and then transmit it to someone else. The isolated storage
model used on Windows Phone that limits applications to their own
storage makes this a very unlikely scenario. However, security best
practices suggest that you should guard against even unlikely scenar-
ios, so you may want to consider encrypting the data in your applica-
tion’s isolated storage.

The second scenario to consider is what happens if an unauthor-
ized user gains access to the device. If you want to protect your data
in this scenario, you must encrypt the data while it is stored on the
device.

The Windows Phone API provides access to the Data Protection
API (DPAPI). DPAPI generates and stores a cryptographic key by us-
ing the user and phone credentials to encrypt and decrypt data. The
ProtectedData class provides access to DPAPI through Protect and
Unprotect methods. On a Windows Phone device, every application
gets its own decryption key, which is created when an application is
run for the first time. Calls to Protect and Unprotect will implicitly
use the decryption key and make sure that all the data remains pri-
vate to the application. In addition, the decryption key persists across
application updates. For more information, see “Security for Windows
Phone,” on the MSDN® developer program website.

Storage Format
Tailspin stores the application’s settings as key/value pairs and uses
serializable model classes to store the survey data as files in isolated
storage. The latest release of the Windows Phone platform includes
the ability to store data in a local database, and the developers at
Tailspin are considering this option for the future. They have imple-
mented the storage service in the application in a way that makes it
easy to replace the storage classes with alternative implementations
if they decide to use a different storage mechanism in the future. The
current implementation also makes it easy to test the storage func-
tionality in the application.

Isolated storage provides
one level of data security—
isolation from other
applications on the device—
but you should consider
whether this is adequate for
the security needs of your
application.

 59Using Services on the Phone

Inside the Implementation
Now is a good time to walk through the code that implements isolated storage in the Tailspin mobile
client application in more detail. As you go through this section, you may want to download the
Windows Phone Tailspin Surveys from the Microsoft Download Center.

You can find the code that implements isolated storage access in the Tailspin mobile client ap-
plication in the Services/Stores folder in the TailSpin.PhoneServices project.

Application Settings
The user enters application settings data on the AppSettingsView page in the Surveys application. The
ISettingsStore interface defines the data items that the application saves as settings. The following
code example shows this interface.

C#
public interface ISettingsStore
{
 string Password { get; set; }
 string UserName { get; set; }
 bool SubscribeToPushNotifications { get; set; }
 bool LocationServiceAllowed { get; set; }
 bool BackgroundTasksAllowed { get; set; }
 event EventHandler UserChanged;
}

The following code example shows how the application implements this interface to save the value
of the Password property in the ApplicationSettings dictionary in the application’s isolated storage.

C#
public class SettingsStore : ISettingsStore
{
 private readonly IProtectData protectDataAdapter;
 private const string PasswordSettingDefault = "";
 private const string PasswordSettingKeyName = "PasswordSetting";
 private readonly IsolatedStorageSettings isolatedStore;
 private UTF8Encoding encoding;
 ...

 public SettingsStore(IProtectData protectDataAdapter)
 {
 this.protectDataAdapter = protectDataAdapter;
 isolatedStore = IsolatedStorageSettings.ApplicationSettings;
 encoding = new UTF8Encoding();
 }

 public string Password
 {
 get
 {

60 chapter three

 return PasswordByteArray.Length == 0 ? PasswordSettingDefault :
 encoding.GetString(PasswordByteArray, 0, PasswordByteArray.Length);
 }
 set
 {
 PasswordByteArray = encoding.GetBytes(value);
 }
 }

 private byte[] PasswordByteArray
 {
 get
 {
 byte[] encryptedValue = GetValueOrDefault(PasswordSettingKeyName,
 new byte[0]);
 if (encryptedValue.Length == 0)
 return new byte[0];
 return protectDataAdapter.Unprotect(encryptedValue, null);
 }
 set
 {
 byte[] encryptedValue = protectDataAdapter.Protect(value, null);
 AddOrUpdateValue(PasswordSettingKeyName, encryptedValue);
 }
 }

 ...

 private void AddOrUpdateValue(string key, object value)
 {
 bool valueChanged = false;

 try
 {
 // If the new value is different, set the new value.
 if (this.isolatedStore[key] != value)
 {
 this.isolatedStore[key] = value;
 valueChanged = true;
 }
 }
 catch (KeyNotFoundException)

 61Using Services on the Phone

 {
 this.isolatedStore.Add(key, value);
 valueChanged = true;
 }
 catch (ArgumentException)
 {
 this.isolatedStore.Add(key, value);
 valueChanged = true;
 }

 if (valueChanged)
 {
 Save();
 }
 }

 private T GetValueOrDefault<T>(string key, T defaultValue)
 {
 T value;

 try
 {
 value = (T)this.isolatedStore[key];
 }
 catch (KeyNotFoundException)
 {
 value = defaultValue;
 }
 catch (ArgumentException)
 {
 value = defaultValue;
 }

 return value;
 }

 private void Save()
 {
 isolatedStore.Save();
 }
}

The SettingsStore constructor accepts a parameter of IProtectData, which specifies the class
that will provide access to the encryption functionality.

62 chapter three

The IProtectData interface, in the TailSpin.Phone.Adapters proj-
ect, defines method signatures for encrypting and decrypting data.
The following code example shows this interface.

C#
public interface IProtectData
{
 byte[] Protect(byte[] userData, byte[] optionalEntropy);
 byte[] Unprotect(byte[] encryptedData, byte[] optionalEntropy);
}

The IProtectData interface is implemented by the ProtectData-
Adapter class, which adapts the ProtectedData class that provides
access to the Data Protection API. The purpose of adapting the
ProtectedData class with a class that implements IProtectData is to
create a loosely coupled class that is testable. The following code
example shows the class.

C#
public class ProtectDataAdapter : IProtectData
{
 public byte[] Protect(byte[] userData, byte[] optionalEntropy)
 {
 return ProtectedData.Protect(userData, optionalEntropy);
 }

 public byte[] Unprotect(byte[] encryptedData,
 byte[] optionalEntropy)
 {
 return ProtectedData.Unprotect(encryptedData,
 optionalEntropy);
 }
}

Therefore, rather than calling the ProtectedData class methods
directly, the PasswordByteArray property in the SettingsStore class
calls the methods in the ProtectDataAdapter class to perform data
encryption and decryption.

An adapter is a design pattern
that translates an interface for
a class into a compatible inter-
face. The adapter translates
calls to its interface into calls
to the original interface. This
approach enables the writing
of loosely coupled code that is
testable.

Tailspin uses JavaScript
Object Notation (JSON)
serialization to reduce CPU
usage and storage space
requirements.

 63Using Services on the Phone

Survey Data
The application saves the local survey data in isolated storage as se-
rialized SurveyTemplate and SurveyAnswer objects. The following
code example shows the definition of the SurveysList object that
uses the model classes SurveyTemplate and SurveyAnswer. The
SurveyTemplate class is a model class that defines a survey and in-
cludes the question types, question text, possible answers, and survey
metadata. The SurveyAnswer class is a model class that defines the
responses collected by the surveyor. For more information about
these model classes, see the section, “The Model Classes,” earlier in
this chapter.

C#
public class SurveysList
{
 public SurveysList()
 {
 this.LastSyncDate = string.Empty;
 }

 public List<SurveyTemplate> Templates { get; set; }

 public List<SurveyAnswer> Answers { get; set; }

 public string LastSyncDate { get; set; }

 public int UnopenedCount { get; set; }
}

The synchronization tasks run by the phone can be performed in
both the background and the foreground. When synchronization oc-
curs in the background, it is performed by a background agent. The
background agent never runs its tasks while the Tailspin mobile client
application is in the foreground. Therefore, the mobile client applica-
tion and the background agent will never be concurrently attempting
to update the survey data in isolated storage. For more information
about background agents, see the section, “Synchronizing Data be-
tween the Phone and the Cloud,” later in this chapter.

A background agent allows
code to run in the background,
even when the application is
not running in the foreground.
A background agent can be
registered as a PeriodicTask, a
ResourceIntensiveTask, or both.

64 chapter three

The following code example shows how the SurveyStore class (that implements the ISurveyStore
interface) performs the serialization and deserialization of the properties of the SurveysList instance
to and from isolated storage.

C#
private readonly IsolatedStorageSettings isolatedStore;
private const string lastSyncDateKey = "lastSyncDateKey";
private const string unopenedCountKey = "unopenedCountKey";
private readonly string storeName;

public SurveyStore(string storeName)
{
 this.storeName = storeName;
 isolatedStore = IsolatedStorageSettings.ApplicationSettings;
 Initialize();
}

public SurveysList AllSurveys { get; set; }

...

private void SaveLastSyncDate()
{
 if (isolatedStore.Contains(lastSyncDateKey))
 {
 isolatedStore[lastSyncDateKey] = AllSurveys.LastSyncDate;
 }
 else
 {
 isolatedStore.Add(lastSyncDateKey, AllSurveys.LastSyncDate);
 }
 isolatedStore.Save();
}

...

private void SaveTemplates()
{
 using (var filesystem = IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (var fs = new IsolatedStorageFileStream(
 storeName + ".templates", FileMode.Create, filesystem))
 {
 var serializer = new System.Runtime.Serialization
 .Json.DataContractJsonSerializer(typeof(List<SurveyTemplate>));
 serializer.WriteObject(fs, AllSurveys.Templates);

 65Using Services on the Phone

 }
 }
}

private void SaveAnswers()
{
 using (var filesystem = IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (var fs = new IsolatedStorageFileStream(
 storeName + ".answers", FileMode.Create, filesystem))
 {
 var serializer = new System.Runtime.Serialization
 .Json.DataContractJsonSerializer(typeof(List<SurveyAnswer>));
 serializer.WriteObject(fs, AllSurveys.Answers);
 }
 }
}

public void SaveStore()
{
 SaveLastSyncDate();
 SaveTemplates();
 SaveAnswers();
}

...

private void Initialize()
{
 AllSurveys = new SurveysList();

 if (isolatedStore.Contains(lastSyncDateKey))
 {
 AllSurveys.LastSyncDate = (string)isolatedStore[lastSyncDateKey];
 }

 if (isolatedStore.Contains(unopenedCountKey))
 {
 AllSurveys.UnopenedCount = (int)isolatedStore[unopenedCountKey];
 }

 using (var filesystem = IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (!filesystem.FileExists(storeName + ".templates"))

66 chapter three

 {
 AllSurveys.Templates = new List<SurveyTemplate>();
 }
 else
 {
 using (var fs = new IsolatedStorageFileStream(
 storeName + ".templates", FileMode.Open, filesystem))
 {
 var serializer = new System.Runtime.Serialization
 .Json.DataContractJsonSerializer(typeof(
 List<SurveyTemplate>));
 AllSurveys.Templates = serializer.ReadObject(fs) as
 List<SurveyTemplate>;
 }
 }

 if (!filesystem.FileExists(storeName + ".answers"))
 {
 AllSurveys.Answers = new List<SurveyAnswer>();
 }
 else
 {
 using (var fs = new IsolatedStorageFileStream(
 storeName + ".answers", FileMode.Open, filesystem))
 {
 var serializer = new System.Runtime.Serialization
 .Json.DataContractJsonSerializer(typeof(List<SurveyAnswer>));
 AllSurveys.Answers = serializer.ReadObject(fs) as
 List<SurveyAnswer>;
 }
 }
 }
}

The following code example shows the ISurveyStore interface in the TailSpin.PhoneServices proj-
ect that defines the operations that the application can perform on the survey store. The SurveyStore
class implements this interface.

C#
public interface ISurveyStore
{
 string LastSyncDate { get; set; }
 SurveysList AllSurveys { get; set; }
 IEnumerable<SurveyTemplate> GetSurveyTemplates();
 IEnumerable<SurveyAnswer> GetCompleteSurveyAnswers();

 67Using Services on the Phone

 void SaveSurveyTemplates(IEnumerable<SurveyTemplate> surveys);
 void SaveSurveyAnswer(SurveyAnswer answer);
 SurveyAnswer GetCurrentAnswerForTemplate(
 SurveyTemplate template);
 void DeleteSurveyAnswers(
 IEnumerable<SurveyAnswer> surveyAnswers);
 void SaveStore();
 void SaveUnopenedCount();
 void MarkSurveyTemplateRead(SurveyTemplate template);

 event EventHandler SurveyAnswerSaved;
}

The SurveyListViewModel class calls the GetSurveyTemplates
method to retrieve a list of surveys to display to the user. The Survey-
ListViewModel class creates filtered lists of surveys (new surveys, fa-
vorite surveys, and so on) after it has added the surveys to Collection-
ViewSource objects.

The SurveysSynchronizationService class uses the GetComplete-
SurveyAnswers, SaveSurveyTemplates, and DeleteSurveyAnswers
methods to manage the survey data stored on the device.

The TakeSurveyViewModel class uses the GetCurrentAnswer-
ForTemplate and SaveSurveyAnswer methods to retrieve and save
survey responses on the device. In addition, the TakeSurveyView-
Model class uses the GetSurveyTemplates method to support pinned
surveys.

Handling Activation and Deactivation
Windows Phone applications must be able to restore the UI state if
the application is reactivated after the user has taken a call or used
another application. In this scenario, the operating system makes the
application dormant, tombstoned, and possibly terminates it, but it
gives you the opportunity to save any data that you can use to put the
application back in the same state if and when the operating system
reactivates it.

Survey templates and
survey answers are stored
in separate files to enable
future development of the
synchronization service.

68 chapter three

For more information about activation, deactivation, and tomb-
stoning, see, “Execution Model Overview for Windows Phone” on MSDN.

The Windows Phone platform provides application-level activa-
tion and deactivation events, with the Application_Activated event
handler in the App class notifying the application instance about
whether it has resumed from dormancy or a tombstoned state.

The mobile client application is implemented using the MVVM
pattern, with each view model being responsible for restoring its state
when returning from a tombstoned state. When the mobile client ap-
plication is reactivated, the information that indicates whether the
application is returning from a tombstoned state is stored in the
ApplicationFrameNavigationService class. The ApplicationFrame-
NavigationService class also provides functionality to determine if a
page needs to recover from tombstoning, by using the frame.Back-
Stack property. The base view model class then uses the Application-
FrameNavigationService class to ensure that only pages that were
tombstoned are resumed. In addition, the base view model class also
provides two methods that can be overridden by child view models to
implement logic that captures the UI state when deactivation occurs,
and restores the UI state.

Overview of the Solution
The Windows Phone platform provides much of the infrastructure
that you need to enable your application to restore the state of the
UI when the application is reactivated:
•	 The phone uses a navigation service to facilitate navigating

between pages. The PhoneApplicationFrame class exposes a
BackStack property that can be used to build a dictionary
which tracks the pages that were tombstoned.

•	 The phone uses a navigating event to notify the application
when navigation is requested, and a navigated event to notify
the application when the content that is being navigated to has
been found and is available.

•	 The phone uses the application Activated event to notify the
application when it has returned from deactivation. This event
also informs the application about whether the instance was
preserved, as is the case when returning from dormancy.

•	 The phone automatically records which screen your application is
displaying, along with the current navigation stack, when it
deactivates the application; then it rebuilds the navigation stack
and redisplays this screen if the phone reactivates the application.

The application must restore its
state if the user returns to the
application after taking a call
or using another application.

 69Using Services on the Phone

•	 The phone provides application-level and page-level state
dictionaries in which you can store key/value pairs. These
dictionaries are preserved when an application is tombstoned.
When an application is activated after being tombstoned, these
dictionaries are used to restore application and page state.
It’s the application’s responsibility to determine what state data

it needs to save to be able to restore the application to the same state
when the phone reactivates it.

In the Tailspin mobile client application, when the user navigates
away from a page that gets recreated every time the page is visited,
such as the AppSettingsView, no state is stored for that page. How-
ever, if the user navigates away from the page unintentionally, then
the data required to recreate the page at a later time is stored in the
application-level state dictionary, which survives tombstoning. For
pages that do not get recreated every time they are visited, such as the
SurveyListView, the data required to recreate the page is always
stored in the application-level state dictionary irrespective of wheth-
er the navigation is intentional or unintentional. When the operating
system reactivates the application, the operating system will redisplay
the view that was active when the application was deactivated. When
returning from dormancy, all object instances will still be in memory
in the exact state prior to dormancy, so the application does not need
to perform any additional tasks. However. when returning from a
tombstoned state, the view model locator in the Tailspin mobile client
application will instantiate the view model for the view, and the view
model will restore its saved state and initialize any services so that it
is back in the state it was in when it was originally deactivated.

Inside the Implementation
Now is a good time to walk through the code that handles the activa-
tion, navigated and navigating events in more detail. As you go through
this section, you may want to download the Windows Phone Tailspin
Surveys application from the Microsoft Download Center.

The Application_Activated event handler in the App class
notifies the application about whether it has resumed from dor-
mancy or a tombstoned state. The following code example shows
the Application_Activated event handler.

C#
private void Application_Activated(object sender,
 ActivatedEventArgs e)
{
 if (e.IsApplicationInstancePreserved)
 {
 PhoneApplicationService.Current.State.Clear();
 }

To meet the Windows Phone
certification requirements,
your application must
complete the deactivation and
reactivation processes within
10 seconds.

The application should store
only enough data to be able
to restore the application
to the same state it was in
when it was deactivated.
Also, remember it’s
possible that a deactivated
application will never be
reactivated, so you must
also save any important data
to permanent storage.

70 chapter three

 else
 {
 ViewModelLocator.NavigationService.RecoveredFromTombstoning = true;
 }
}

The IsApplicationInstancePreserved property indicates whether the application instance was
preserved intact in memory. If the IsApplicationInstancePreserved property of the ActivatedEvent-
Args is true, it means that the application has returned from dormancy and thus the application state
dictionary is cleared. If the IsApplicationInstancePreserved property of the ActivatedEventArgs is
false, it means that the application has returned from a tombstoned state and thus the Recovered-
FromTombstoning property of the ApplicationFrameNavigationService instance is set to true.

The ApplicationFrameNavigationService class provides the DoesPageNeedtoRecoverFrom-
Tombstoning method, which determines if a page needs to recover from tombstoning. The following
code example shows this method and the UpdateTombstonedPageTracking method.

C#
private Dictionary<string, bool> tombstonedPages;
...

public bool DoesPageNeedtoRecoverFromTombstoning(Uri pageUri)
{
 if (!RecoveredFromTombstoning) return false;

 if (tombstonedPages == null)
 {
 tombstonedPages = new Dictionary<string, bool>();
 tombstonedPages.Add(pageUri.ToString(), true);
 foreach (var journalEntry in frame.BackStack)
 {
 tombstonedPages.Add(journalEntry.Source.ToString(), true);
 }
 return true;
 }

 if (tombstonedPages.ContainsKey(pageUri.ToString()))
 {
 return tombstonedPages[pageUri.ToString()];
 }
 return false;
}

public void UpdateTombstonedPageTracking(Uri pageUri)
{
 tombstonedPages[pageUri.ToString()] = false;
}

 71Using Services on the Phone

The DoesPageNeedtoRecoverFromTombstoning method is used
by the ViewModel class in order to determine whether or not to call
the OnPageResumeFromTombstoning method in the ViewModel
class. The method makes the assumption that the list of pages that
were tombstoned can be determined by taking the first page that was
instantiated due to a tombstoning recovery, and then examining the
backstack. It uses the BackStack property of the PhoneApplication-
Frame class to populate a dictionary with the pages that were tomb-
stoned and uses this dictionary to track whether the ViewModel class
called the OnPageResumedFromTombstoning method for each
tombstoned page. The UpdateTombstonedPageTracking method
simply updates a given page entry in the tombstonedPages dictionary
to mark that the page has completed tombstone recovery.

The developers at Tailspin created the IPhoneApplicationService-
Facade interface which is implemented by the PhoneApplication-
ServiceFacade class. This facade provides a simplified interface to the
PhoneApplicationService class. The following code example shows
the IPhoneApplicationServiceFacade interface.

C#
public interface IPhoneApplicationServiceFacade
{
 void Save(string key, object value);
 T Load<T>(string key);
 void Remove(string key);
}

The PhoneApplicationServiceFacade class has methods that
save and load any state that the page needs when it’s navigated to or
navigated away from during application deactivation. The following
code example shows the complete PhoneApplicationServiceFacade
class.

There is also a PhoneApplicationPage class that allows you to
store transient page state as you navigate away from a page and re-
store the state when you return to the page.

C#
public class PhoneApplicationServiceFacade :
 IPhoneApplicationServiceFacade
{
 public void Save(string key, object value)
 {
 if (PhoneApplicationService.Current.State.ContainsKey(key))
 {
 PhoneApplicationService.Current.State.Remove(key);
 }

A facade is a design pattern
that provides a simplified
interface for a class. The
facade translates calls to its
interface into calls to the
original class. This approach
enables writing loosely
coupled code that is testable.

A service is a facade that
exposes a loosely coupled unit
of functionality that imple-
ments one action.

When an application is no
longer in the foreground,
it is said to be dormant.
We often refer to the
process of terminating a
dormant application as
“tombstoning.”

72 chapter three

 PhoneApplicationService.Current.State.Add(key, value);
 }

 public T Load<T>(string key)
 {
 object result;

 if (!PhoneApplicationService.Current.State
 .TryGetValue(key, out result))
 {
 result = default(T);
 }
 else
 {
 PhoneApplicationService.Current.State.Remove(key);
 }

 return (T)result;
 }

 public void Remove(string key)
 {
 if (PhoneApplicationService.Current.State.ContainsKey(key))
 {
 PhoneApplicationService.Current.State.Remove(key);
 }
 }
}

Each view model is responsible for managing its own state when
the page is navigated to or navigated away from, either intentionally or
during application deactivation. Most of the view models in the appli-
cation derive from the ViewModel class that listens to the Navigated
and Navigating events in the ApplicationFrameNavigationService
class, which is a facade over the PhoneApplicationFrame SDK class.
The base ViewModel class also uses the ApplicationFrameNavigation-
Service class to determine if the application is returning from a tomb-
stoned state. The following code example shows part of the abstract
ViewModel class.

The developers at Tailspin chose to make each view model respon-
sible for persisting and reloading its own state.The objects that you save

in the State dictionary must
be serializable.

 73Using Services on the Phone

C#
public abstract class ViewModel : NotificationObject, IDisposable
{
 private readonly INavigationService navigationService;
 private readonly IPhoneApplicationServiceFacade
 phoneApplicationServiceFacade;
 private bool disposed;
 private readonly Uri pageUri;
 private static Uri currentPageUri;

 protected ViewModel(INavigationService navigationService,
 IPhoneApplicationServiceFacade phoneApplicationServiceFacade,
 Uri pageUri)
 {
 this.pageUri = pageUri;
 this.navigationService = navigationService;
 this.phoneApplicationServiceFacade = phoneApplicationServiceFacade;

 this.navigationService.Navigated +=
 this.OnNavigationService_Navigated;
 this.navigationService.Navigating +=
 this.OnNavigationService_Navigating;
 }

 void OnNavigationService_Navigating(object sender,
 System.Windows.Navigation.NavigatingCancelEventArgs e)
 {
 if (currentPageUri == null || pageUri == null) return;

 if (currentPageUri.ToString().StartsWith(pageUri.ToString()))
 {
 OnPageDeactivation(e.IsNavigationInitiator);
 }
 }

 void OnNavigationService_Navigated(object sender,
 System.Windows.Navigation.NavigationEventArgs e)
 {
 if (IsResumingFromTombstoning)
 {
 if (e.Uri.ToString().StartsWith(pageUri.ToString()))
 {
 OnPageResumeFromTombstoning();
 navigationService.UpdateTombstonedPageTracking(pageUri);
 }

74 chapter three

 }
 currentPageUri = e.Uri;
 }

 ...

 protected bool IsResumingFromTombstoning
 {
 get
 {
 return navigationService.DoesPageNeedToRecoverFromTombstoning(pageUri);
 }
 }

 ...

 public IPhoneApplicationServiceFacade
 PhoneApplicationServiceFacade
 {
 get { return this.phoneApplicationServiceFacade; }
 }

 public virtual void OnPageDeactivation(bool isIntentionalNavigation)
 {
 }

 public abstract void OnPageResumeFromTombstoning();

 ...

 protected virtual void Dispose(bool disposing)
 {
 ...
 if (disposing)
 {
 navigationService.Navigated -=
 this.OnNavigationService_Navigated;
 navigationService.Navigating -=
 this.OnNavigationService_Navigating;
 }
 ...
 }
}

 75Using Services on the Phone

The OnNavigationService_Navigating event handler calls the
OnPageDeactivation method only on the view model of the page
where navigation is requested. The IsNavigationInitiator property of
the NavigatingCancelEventArgs class is passed as a parameter into the
OnPageDeactivation method. This property indicates whether the
current application is the both the origin and destination of the naviga-
tion. If it is, it means that page-based navigation within the application
is occurring. In this case, deactivation will not be performed. If the
current application is not the origin and destination of the navigation
(for instance the Windows Phone device has received a phone call),
deactivation will occur and the state of the page will be stored in the
application state. However, the SelectedPivotIndex property of the
SurveyListViewModel class is stored even when the user intentionally
navigates away from the page. This is because the mobile client applica-
tion may be deactivated from another page, such as the FilterSettings-
View page, and when the application is reactivated, that page will be
restored. However, when the user navigates back to the SurveyListView
page, the SelectedPivotIndex property must be restored so that the
user sees the survey list that was being viewed before the application
was deactivated.

The OnNavigationService_Navigated event handler is used to
determine if the view model instance needs to recover from tomb-
stoning. It first checks the IsResumingFromTombstoning property
to determine whether the application is returning from a tombstoned
state, and whether the view model has already recovered its tomb-
stoned state. If the IsResumingFromTombstoning property is true,
the application is returning from tombstoning. If the IsResuming-
FromTombstoning property is false, the application is either return-
ing from dormancy or undertaking a page-based navigation. If the
application is returning from tombstoning, the OnPageResume-
FromTombstoning method is called on the view model of the page
that’s been navigated to, to restore the desired state to the view
model. The ApplicationFrameNavigationService is then notified
that the page has completed tombstone recovery, thus ensuring that
pages that were tombstoned are resumed only once.

Remember, the navigating
event notifies the
application when navigation
is requested, and the
navigated event notifies
the application when
the content that is being
navigated to has been found
and is available.

76 chapter three

Each view model can override the OnPageResumeFromTombstoning and OnPageDeactivation
methods to provide its custom state saving and restoring behavior. The following code example shows
how the SurveyListViewModel class saves and restores its state.

C#
public SurveyListViewModel(
 ISurveyStoreLocator surveyStoreLocator,
 ISurveysSynchronizationService synchronizationService,
 INavigationService navigationService,
 IPhoneApplicationServiceFacade phoneApplicationServiceFacade,
 IShellTile shellTile,
 ISettingsStore settingsStore,
 ILocationService locationService)
 : base(navigationService, phoneApplicationServiceFacade,
 new Uri(@"/Views/SurveyList/SurveyListView.xaml", UriKind.Relative))
{
 ...
}

...

public override void OnPageDeactivation(bool isIntentionalNavigation)
{
 this.PhoneApplicationServiceFacade.Save("MainPivot",
 this.SelectedPivotIndex);
}

public override sealed void OnPageResumeFromTombstoning()
{
 this.selectedPivotIndex =
 this.PhoneApplicationServiceFacade.Load<int>("MainPivot");
}

The OnPageDeactivation method is called by the Navigating event of the PhoneApplication-
Frame class when the page is intentionally or unintentionally navigated away from. It uses the Save
method from the PhoneApplicationServiceFacade class to save the MainPivot key/value pair to
application state, with the value being the SelectedPivotIndex property value.

The OnPageResumeFromTombstoning method is called by the Navigated event of the Phone-
ApplicationFrame class when the page is resuming from tombstoning. It uses the Load method from
the PhoneApplicationServiceFacade class to load the MainPivot key/value pair from the application
state and store the value in the selectedPivotIndex field.

 77Using Services on the Phone

Reactivation and the Pivot Control
When your application is reactivated by the operating system, you
should restore the UI state, which in the Tailspin application includes
displaying the active question if the application was made dormant
or tombstoned while the user was completing a survey. The follow-
ing code example shows the OnPageResumeFromTombstoning
method of the TakeSurveyViewModel class, which restores the
SelectedPivotIndex property, along with the survey answer and
survey id, from the application state, when the application returns
from a tombstoned state.

C#
public override sealed void OnPageResumeFromTombstoning()
{
 this.tombstoned = this.PhoneApplicationServiceFacade
 .Load<SurveyAnswer>("TakeSurveyAnswer");
 this.SelectedPivotIndex = this.PhoneApplicationServiceFacade
 .Load<int>("TakeSurveyCurrentIndex");
 this.surveyId = this.PhoneApplicationServiceFacade
 .Load<string>("TakeSurveyId");
 Initialize(this.surveyId);
 this.locationService.StartWatcher();
}

This method is called by the Navigated event of the Phone-
ApplicationFrame class when the page is resuming from tombston-
ing. It uses the Load method from the PhoneApplicationService-
Facade class to load from application state the TakeSurveyAnswer
key/value pair, the TakeSurveyCurrentIndex key/value pair, and the
TakeSurveyId key/value pair. It then calls the Initialize method, pass-
ing the surveyId field into the method.

To display the correct question when the application is reactivat-
ed, Tailspin changes the SelectedItem property of the control. The
following code example shows the event handlers in the code-behind
for the TakeSurveyView page.

C#
private bool loaded;

private void PivotSelectionChanged(object sender,
 System.Windows.Controls.SelectionChangedEventArgs e)
{
 if (this.loaded)
 {
 ((TakeSurveyViewModel)this.DataContext)
 .SelectedPivotIndex = this.questionsPivot.SelectedIndex;
 }

If the application has been
deactivated, and the user
relaunches it from Start,
the state data is discarded.

78 chapter three

}

private void ControlLoaded(object sender,
 System.Windows.RoutedEventArgs e)
{
 var vm = (TakeSurveyViewModel)this.DataContext;
 this.questionsPivot.SelectedItem =
 this.questionsPivot.Items[vm.SelectedPivotIndex];
 this.loaded = true;
 ...
}

The SelectedPivotIndex of the TakeSurveyViewModel class
tracks the currently active question in the Pivot control.

Handling Asynchronous Interactions
Chapter 2, “Building the Mobile Client,” describes how Tailspin imple-
mented commands in the mobile client application. For some com-
mands, Tailspin implements the command asynchronously to avoid
locking the UI while a time-consuming operation is running.

For example, on the AppSettingsView page, a user can enable or
disable push notifications of new surveys from the Microsoft Push
Notification Service (MPNS). This requires the application to send a
request to the MPNS that the application must handle asynchro-
nously. The application displays a progress indicator on the AppSet-
tingsView page while it handles the asynchronous request.

For more information about MPNS, see Chapter 4, “Connecting
with Services.”

Tailspin decided to use the Reactive Extensions (Rx) for .NET to
run asynchronous tasks on the phone because it enables them to cre-
ate compact, easy-to-understand code for complex asynchronous
operations.

Using Reactive Extensions
Rx allows you to write compact, declarative code to manage complex,
asynchronous operations. Rx can be understood by comparing it to
the more familiar concept of enumerable collections. Figure 3 shows
two alternative approaches to iterating over a sequence.

The Reactive Extensions
for .NET are a great way to
handle how an application
interacts with multiple
sources of data, such as
user input events and web
service requests.

 79Using Services on the Phone

Figure 3
Enumerable and observable sequences

To iterate over an enumerable sequence, you can use an iterator to pull each item from the se-
quence in turn, which is what the C# foreach construct does for you. With an observable sequence,
you subscribe to an observable object that pushes items from the sequence to you. For example, you
can treat the events raised by a control or the data arriving over the network as an observable se-
quence. Furthermore, you can use standard LINQ operators to filter the items from the observable
sequence, and control which thread you use to process each item as it arrives.

Inside the Implementation
The application performs an asynchronous request to the Microsoft Push Notification Service when
the user subscribes to push notifications on the AppSettingsView page. The following code example
from the AppSettingsView.xaml file shows the definitions of the progress indicator that is active
during the asynchronous request and the ToggleSwitch control that enables the user to set his or her
preference.

Xs

X1
X2
X3

X4

X5

X...Pull Push

Enumerable
Sequence

Observable
Sequence

for each (val x in xs)
 F(x);

xs.subscribe (x=>
 F(x)):

XAML
...
xmlns:toolkit="clr-namespace:Microsoft.Phone.Controls;
assembly=Microsoft.Phone.Controls.Toolkit"
...
<shell:SystemTray.ProgressIndicator>
 <shell:ProgressIndicator IsIndeterminate="True"
 IsVisible="{Binding IsSyncing}"
 Text="{Binding ProgressText}"/>
</shell:SystemTray.ProgressIndicator>
...

<toolkit:ToggleSwitch Header="Subscribe to Push Notifications"
 Margin="0,202,0,0"
 IsChecked="{Binding SubscribeToPushNotifications, Mode=TwoWay}" />

80 chapter three

The ToggleSwitch control binds to the SubscribeToPushNotifications property of the App-
SettingsViewModel, and the ProgressIndicator control binds to the IsSyncing property of the App-
SettingsViewModel class.

The following code example from the AppSettingsViewModel class shows what happens when
the user clicks the Save button on the AppSettingsView page. This Submit method handles the asyn-
chronous call to the UpdateReceiveNotifications method in the RegistrationServiceClient class by
using Rx. Before it calls the UpdateReceiveNotifications method, it first sets the IsSyncing property
to true so that the UI can display an active progress meter. The method handles the asynchronous call
in three steps:

1. The UpdateReceiveNotifications method in the RegistrationServiceClient class returns an
observable TaskSummaryResult object that contains information about the task.

2. The Submit method uses the ObserveOnDispatcher method to handle the TaskSummary-
Result object on the dispatcher thread.

3. The Subscribe method specifies how to handle the TaskSummaryResult object and starts
the execution of the source observable sequence by asking for the next item.

C#
private readonly IRegistrationServiceClient registrationServiceClient;
private IDisposable subscription;
...

public void Submit()
{
 ...
 this.isSyncing = true;
 ...

 if (this.SubscribeToPushNotifications ==
 this.settingsStore.SubscribeToPushNotifications)
 {
 this.IsSyncing = false;
 if (this.NavigationService.CanGoBack) this.NavigationService.GoBack();
 return;
 }

 ...

 subscription = this.registrationServiceClient.
 .UpdateReceiveNotifications(this.SubscribeToPushNotifications)
 .ObserveOnDisptacher()
 .Subscribe
 (
 taskSummary =>
 ... ,

 81Using Services on the Phone

 exception =>
 ...
);
}

The following code example shows the definition of the action that the Subscribe method per-
forms when it receives a TaskSummaryResult object. If the TaskSummaryResult object indicates
that the change was successful, it updates the setting in local isolated storage, sets the IsSyncing
property to false, and navigates back to the previous view. If the TaskSummaryResult object indicates
that the change failed, it reports the error to the user.

C#
taskSummary =>
{
 if (taskSummary == TaskSummaryResult.Success)
 {
 this.settingsStore.SubscribeToPushNotifications =
 this.SubscribeToPushNotifications;
 this.IsSyncing = false;
 if (this.NavigationService.CanGoBack) this.NavigationService.GoBack();
 if (!SubscribeToPushNotifications)
 {
 CleanUp();
 }
 }
 else
 {
 // Update unsuccessful, probably due to communication issue with
 // Registration Service. Don't close channel so that we can retry later.
 if (!SubscribeToPushNotifications)
 {
 CleanUp();
 }
 var errorText = TaskCompletedSummaryStrings
 .GetDescriptionForResult(taskSummary);
 this.IsSyncing = false;
 this.submitErrorInteractionRequest.Raise(
 new Notification
 {
 Title = "Push Notification: Server error",
 Content = errorText
 },
 n => { });
 }
 this.CanSubmit = true;
}

82 chapter three

The Subscribe method can also handle an exception returned
from the asynchronous task. The following code example shows how
it handles the scenario in the Tailspin mobile client where the asyn-
chronous action throws a WebException exception.

C#
exception =>
{
 this.CanSubmit = true;

 // Update unsuccessful, probably due to communication issue
 // with Registration Service. Don't close channel so that
 // we can retry later.
 if (SubscribeToPushNotifications)
 {
 CleanUp();
 }

 if (exception is WebException)
 {
 var webException = exception as WebException;
 var summary = ExceptionHandling.GetSummaryFromWebException(
 "Update notifications", webException);
 var errorText = TaskCompletedSummaryStrings
 .GetDescriptionForResult(summary.Result);
 this.IsSyncing = false;
 this.submitErrorInteractionRequest.Raise(
 new Notification
 {
 Title = "Push Notification: Server error",
 Content = errorText
 },
 n => { });
 }
 else
 {
 throw exception;
 }
}

It’s not good practice to
catch all exception types;
you should rethrow any
unexpected exceptions and
not simply swallow them.

 83Using Services on the Phone

Synchronizing Data between the Phone
and the Cloud

The Tailspin mobile client must be able to download new surveys from
the Tailspin Surveys service and upload survey answers to the service.
This section describes how Tailspin designed and implemented this
functionality. It focuses on the details of the synchronization logic
instead of on the technologies the application uses to store data lo-
cally and to interact with the cloud. Details of the local storage imple-
mentation are described earlier in this chapter, and Chapter 4, “Con-
necting with Services,” describes how the mobile client application
interacts with Tailspin’s cloud services.

There are two separate synchronization tasks that the mobile
client must perform:

•	 The mobile client must download from the cloud service any
new surveys that match the user’s subscription criteria.

•	 The mobile client must send completed survey answers to
the cloud service for analysis.

These two tasks are independent of each other; therefore, the
mobile client can perform these operations in parallel. Furthermore,
for the Tailspin application, the synchronization logic is very simple.
At the time of this writing, the Tailspin cloud application does not
allow subscribers to modify or delete their survey definitions, so the
mobile client only needs to look for new survey definitions. On the
client, a surveyor cannot modify survey answers after the survey is
complete, so the mobile client can send all of its completed survey
answers to the cloud service and then remove them from the mobile
client’s local store.

In the Tailspin mobile client application, the synchronization pro-
cess can be initiated automatically or manually by the user tapping a
button. Because synchronization can be a time-consuming process,
the mobile client should perform synchronization asynchronously,
and notify the user of the outcome when the synchronization com-
pletes.

How often you should run a synchronization process in your ap-
plication involves some trade-offs. More frequent synchronizations
mean that the data on both the client and in the service is more up to
date. It can also help to free up valuable storage space on the client if
the client no longer needs a local copy of the data after it has been
transferred to the service. Data stored in the service is also less vulner-
able to loss or unauthorized access. However, synchronization is often
a resource-intensive process itself, consuming battery power and CPU
cycles on the mobile client and using potentially expensive bandwidth
to transfer the data. You should design your synchronization logic to
transfer as little data as possible.

The Tailspin mobile client
synchronizes survey definitions
and answers between the phone
and the Tailspin cloud service.

Tailspin offers both
manual and automatic
synchronization between
the phone and the cloud.

Tailspin’s synchronization
logic is relatively simple.
A more complex client
application may have to
deal with modified and
deleted data during the
synchronization process.

84 chapter three

Overview of the Solution
Tailspin considered using the Microsoft Sync Framework, but they decided to implement the synchro-
nization logic themselves. The reason for this decision was that the synchronization requirements for
the application are relatively simple, which meant that the risks associated with developing this func-
tionality themselves was lower. The developers at Tailspin have designed the synchronization service
so that they can easily replace the synchronization functionality with an alternative implementation
in the future.

Automatic Synchronization
Automatic synchronization between the mobile client application and the Surveys cloud application
is performed by a background agent. Background agents allow an application to execute code in the
background, even when the application is not running in the foreground. Background agents can run
two types of task:

•	 Periodic tasks that run for a short period of time at regular intervals. A typical scenario for
this type of task is performing small amounts of data synchronization.

•	 Resource-intensive tasks that run for a relatively long period of time when the phone meets
a set of requirements relating to processor activity, power source, and network connection.
A typical scenario for this type of task is synchronizing large amounts of data to the phone
while it is not actively being used.

An application may have only one background agent, which must be registered as a periodic task,
a resource-intensive task, or both. The schedule on which the agent runs depends on which type of
task is registered.

Periodic tasks typically run for up to 25 seconds every 30 minutes. Other constraints may prevent a
periodic task from running.

Resource-intensive tasks typically run for up to 10 minutes. In order to run, the Windows Phone
device must be connected to an external power source and have a battery power greater than 90%.
In addition, the Windows Phone device must have a network connection over Wi-Fi or through a
connection to a PC, and the device screen must be locked.

The mobile client application uses a periodic task to download any new surveys that match the
user’s subscription criteria, and a resource-intensive task to upload completed survey answers to the
cloud service. The upload only occurs if certain constraints are met on the device. A toast notification
is used to inform the user of the result of a background task when it is performed.

The scenarios that control the lifespan of the background tasks are as follows:
•	 When the application launches, the periodic task and the resource-intensive task are re-

moved from the operating system scheduler.
•	 When the application closes, the periodic task and the resource-intensive task are added to

the operating system scheduler.
This design decision ensures that both the periodic task and the resource-intensive task will

never run synchronization tasks in the background while the application is running synchronization
tasks is in the foreground, thus avoiding any potential concurrency issues.

The background tasks use Rx to perform the synchronization. However, there is no guarantee that
the tasks will ever run, due to restrictions such as battery life, network connectivity, and memory use.
Therefore, it is still possible for the user to initiate synchronization manually. For more information
about background agents, see, “Background Agents Overview for Windows Phone.”

 85Using Services on the Phone

Manual Synchronization
Tailspin decided to use the Rx to run the two manual synchronization
tasks asynchronously and in parallel on the phone. Figure 4 summa-
rizes the manual synchronization process and the tasks that it per-
forms.

It is possible that a resource-
intensive agent will never
be run on a particular
phone, due to the phone
constraints that must be
met. You should consider
this when designing your
application. It may be more
appropriate to use the
background file transfer
service if the data to be
transferred can be grouped
into separate files that can
be queued up.

It’s important to let the user
know that an operation is
running asynchronously.
When you don’t know how
long it will take, use the
indeterminate progress bar.

Figure 4
The manual synchronization process on the phone

The user starts the synchronization process by tapping a button
in the UI. A progress indicator in the UI is bound to the IsSynchroniz-
ing property in the view model to provide a visual cue that the syn-
chronization process is being performed. Rx runs the two tasks in
parallel, and after both tasks complete, it updates the view model
with the new survey data.

In Figure 4, Task A is responsible for downloading a list of new
surveys for the user and saving them locally in isolated storage. The
service creates the list of new surveys to download based on informa-
tion sent by the mobile client application. The client sends the date of
the last synchronization so that the service can find surveys created
since that date, and the service uses the user name sent by the client
to filter for surveys that the user is interested in. For more informa-
tion, see the section, “Filtering Data,” in Chapter 4, “Connecting with
Services.”

Task B sends all completed survey answer data to the cloud ser-
vice, and then it deletes the local copy to free up storage space on the
phone.

Task A

Task B

Get a list of new surveys from
the service.
Save new surveys on the phone.

IsSynchronizing = true
Excecute tasks asynchronously

Wait for tasks to complete
IsSynchronizing = false
Update the view model

Get a list of completed surveys
Send completed survey answers to
the service
Delete completed survey answers
from the phone

Start
Synchronization

86 chapter three

When both tasks are complete, the application updates the data
in the view model, the UI updates based on the bindings between the
view and the view model, and the application displays a toast notifica-
tion if the synchronization was successful or an error pop-up window
otherwise. For more information about how the mobile client applica-
tion handles UI notifications, see the section, “User Interface Notifi-
cations,” in Chapter 2, “Building the Mobile Client."

Limitations of the Current Approach
As discussed earlier, Tailspin’s requirements for the synchronization
service are relatively simple because the online Tailspin Surveys ser-
vice does not allow tenants to modify a survey after they have pub-
lished it. However, it is possible for tenants to delete surveys in the
online application. The current synchronization process in the sample
application does not take this into account, so the number of survey
definitions stored on the client never decreases. Furthermore, the cli-
ent will continue to be able to submit answers to surveys that no
longer exist in the online service. A real implementation should extend
the synchronization logic to accommodate this scenario. One possible
solution would be to give every survey an expiration date and make it
the mobile client’s responsibility to remove out-of-date surveys. An-
other solution would be to adopt a full-blown synchronization ser-
vice, such as the Microsoft Sync Framework.

In addition, the current approach does not address the use case
where a user removes a tenant from their list of preferred tenants. The
mobile client application will not receive any new surveys from the
deselected tenants, but the application does not remove any previ-
ously downloaded surveys from tenants who are no longer on the list.
A complete synchronization solution for Tailspin should also address
this use case.

Inside the Implementation
Now is a good time to walk through the code that implements the
data synchronization in more detail. As you go through this section,
you may want to download the Windows Phone Tailspin Surveys ap-
plication from the Microsoft Download Center.

These two limitations
highlight the fact that
synchronization logic can
be complicated, even in
relatively simple applications.

 87Using Services on the Phone

Automatic Synchronization
The App class controls the lifespan of the background tasks via the
Application_Launching and Application_Closing methods. The fol-
lowing code example shows these methods.

C#
// Code to execute when the application is launching
// (e.g., from Start)
// This code will not execute when the application is reactivated
private void Application_Launching(object sender,
 LaunchingEventArgs e)
{
 this.ViewModelLocator.ScheduledActionClient.ClearTasks();
}

// Code to execute when the application is closing
// (e.g., user hit Back)
// This code will not execute when the application is deactivated
private void Application_Closing(object sender,
 ClosingEventArgs e)
{
 this.ViewModelLocator.SurveyListViewModel
 .ResetUnopenedSurveyCount();

 this.ViewModelLocator.ScheduledActionClient.EnsureTasks();
 this.ViewModelLocator.Dispose();
}

The Application_Launching method calls the ClearTasks method
from the ScheduledActionClient class. This will remove both the peri-
odic task and the resource-intensive task from the operating system
scheduler. The Application_Closing method calls the ResetUnopened-
SurveyCount method of the SurveyListViewModel class, which resets
the UnopenedSurveyCount property of the SurveysSynchronization-
Service class and the Count property of the Application Tile. It then
calls the EnsureTasks method from the ScheduledActionClient class,
which adds both the periodic task and the resource-intensive task to the
operating system scheduler before disposing of the instance of the
ViewModelLocator class. However, the Application_Closing method
is only executed when the user navigates backwards past the first page
of the application. Therefore, if the user does not exit the application
by using this approach, the background tasks will not be added to the
operating system scheduler.

The same background tasks run for all users. Changing the user-
name does not create new background tasks.

A resource-intensive task is
used to upload completed
surveys to the cloud service,
as the surveys answers could
include audio and images.

88 chapter three

The ScheduledActionClient class implements the IScheduledActionClient interface and pro-
vides a facade over the ScheduledActionServiceAdapter class, which in turn adapts the Scheduled-
ActionService class from the API. The purpose of adapting the ScheduledActionService class is to
create a loosely coupled class that is testable. The following code example shows the UserEnabled
property from the ScheduledActionClient class, along with the AddPeriodicTask, AddResource-
IntensiveTask, ClearTasks, and EnsureTasks methods.

C#
private readonly IScheduledActionService scheduledActionService;

...

public void AddPeriodicTask(string taskName, string taskDescription,
 TimeSpan debugDelay)
{
 RemoveTask(taskName);

 var periodicTask = new PeriodicTask(taskName);
 periodicTask.Description = taskDescription;

 scheduledActionService.Add(periodicTask);
#if DEBUG
 if (debugDelay > TimeSpan.Zero)
 scheduledActionService.LaunchForTest(taskName, debugDelay);
#endif
}

public void AddResourceIntensiveTask(string taskName, string taskDescription,
 TimeSpan debugDelay)
{
 RemoveTask(taskName);

 var resourceIntensiveTask = new ResourceIntensiveTask(taskName);
 resourceIntensiveTask.Description = taskDescription;

 scheduledActionService.Add(resourceIntensiveTask);

#if DEBUG
 if (debugDelay > TimeSpan.Zero)
 scheduledActionService.LaunchForTest(taskName, debugDelay);
#endif
}

public void ClearTasks()
{
 RemoveTask(Constants.PeriodicTaskName);

 89Using Services on the Phone

 //removed only because this sample will normally be reviewed in a debug scenario
 //where the resource-intensive task may run while the app is in the foreground
 //possibly creating concurrency issues
 RemoveTask(Constants.ResourceTaskName);
}

public void EnsureTasks()
{
 if (UserEnabled())
 {
 try
 {
 AddPeriodicTask(Constants.PeriodicTaskName,
 Constants.PeriodicTaskDescription, TimeSpan.FromMinutes(3));
 AddResourceIntensiveTask(Constants.ResourceTaskName,
 Constants.ResourceTaskDescription, TimeSpan>FromMinutes(3));
 }
 catch
 {
 //possible exception is hidden here since this method is called
 //during app closing. Check for OS-level disabling of background tasks
 //is checked when saving on the Settings page
 }
 }
}

public bool IsEnabled
{
 get
 {
 bool result = true;

 try
 {
 //currently the only way to check if a user has disabled background agents
 //at the OS settings level is to attempt to add them
 AddPeriodicTask(Constants.PeriodicTaskName,
 Constants.PeriodicTaskDescription);
 RemoveTask(Constants.PeriodicTaskName);
 }
 catch (InvalidOperationException exception)
 {
 if (exception.Message.Contains(Constants.DisabledBackgroundException))
 {

90 chapter three

 result = false;
 }
 }

 return result;
 }
}

public bool UserEnabled
{
 get
 {
 return !string.IsNullOrEmpty(settingsStore.UserName) &&
 settingsStore.BackgroundTasksAllowed;
 }
}
...

The UserEnabled property returns a Boolean value indicating whether or not the settings store
contains a username, and whether or not background tasks are turned on in the application. The Add-
PeriodicTask method adds a new periodic task to the operating system scheduler by calling the Add
method of the ScheduledActionServiceAdapter class, which in turn calls the ScheduledActionService
Add method from the API. Similarly, a new resource-intensive task is added to the operating system
scheduler by the AddResourceIntensiveTask method. The ClearTasks method is called when the ap-
plication launches, and removes both the periodic task and the resource-intensive task from the operat-
ing system scheduler. The EnsureTasks method is called when the application closes, and adds both the
periodic task and the resource-intensive task to the operating system scheduler. The IsEnabled prop-
erty checks if the user has disabled background agents in the operating system settings. It does this by
attempting to add a PeriodicTask, and then removes it. If an InvalidOperationException occurs, it
means that background agents are disabled in the operating system settings.

The methods that execute the background tasks are contained in the ScheduledAgent class in
the TailSpin.PhoneAgent project. The following code example shows the OnInvoke method, which
executes the background tasks.
C#
protected override void OnInvoke(ScheduledTask task)
{
 if (task is PeriodicTask)
 {
 RunPeriodicTask(task);
 }
 else if(task is ResourceIntensiveTask)
 {
 RunResourceIntensiveTask(task);
 }
}

 91Using Services on the Phone

The OnInvoke method accepts a ScheduledTask as a parameter, and if it’s a PeriodicTask, calls the
RunPeriodicTask method. If the parameter is a ResourceIntensiveTask, the RunResourceIntensive-
Task method is called. The following code example shows the RunPeriodicTask method.

C#
private void RunPeriodicTask(ScheduledTask task)
{
#if ONLY_PHONE
 var surveyServiceClient = new SurveysServiceClientMock(settingsStore);
#else
 var httpClient = new HttpClient();
 var surveyServiceClient = new SurveysServiceClient(
 new Uri("http://127.0.0.1:8080/Survey/"), settingsStore, httpClient);
#endif
 var surveyStoreLocator = new SurveyStoreLocator(settingsStore,
 storeName => new SurveyStore(storeName));
 var synchronizationService = new SurveysSynchronizationService(
 () => surveyServiceClient, surveyStoreLocator);

 synchronizationService
 .GetNewSurveys()
 .ObserveOnDispatcher()
 .Subscribe(SyncCompleted, SyncFailed);

#if DEBUG
 ScheduledActionService.LaunchForTest(task.Name, TimeSpan.FromMinutes(3));
#endif
}

The RunPeriodicTask method uses Rx to run the synchronization process asynchronously. The
asynchronous calls are handled as follows:

1. The GetNewSurveys method in the SurveysSynchronizationService class returns an
observable TaskSummaryResult object that contains information about the task.

2. The RunPeriodicTask method uses the ObserveOnDispatcher method to handle the Task-
SummaryResult object on the dispatcher thread.

3. The Subscribe method specifies how to handle the TaskSummaryResult object and how to
handle an error occurring.

The LaunchForTest method is used to launch the background agent when debugging. Periodic
agents are not launched by the system when the debugger is attached. This method can be called from
the foreground application while debugging, enabling you to step through the background agent code.

Memory and execution time policies are not enforced while the debugger is attached. Therefore, it
is important that you test your agent while not debugging to verify that your agent does not exceed
the memory cap or run longer than the allotted time period for the agent type.

The following code example shows the definition of the action that the Subscribe method per-
forms when it receives a TaskSummaryResult object.

92 chapter three

C#
private void SyncCompleted(TaskCompletedSummary taskSummary)
{
 int newCount;

 if (taskSummary != null &&
 int.TryParse(taskSummary.Context, out newCount) &&
 newCount > 0)
 {
 var toast = new ShellToast();
 toast.Title = TaskCompletedSummaryStrings
 .GetDescriptionForSummary(taskSummary);
 toast.Content = "";
 toast.Show();
 }

 NotifyComplete();
}

If the TaskSummaryResult object indicates that new surveys have been downloaded, a toast
notification is built that informs the user that synchronization was successful and indicates how
many new surveys have been downloaded. Alternatively, if the TaskSummaryResult object indicates
that completed survey answers have been uploaded, a toast notification is built that informs the user
that synchronization was successful and indicates how many survey’s answers were uploaded. The
BackgroundAgent.NotifyComplete method is then called to inform the operating system that the
agent has completed its intended task for the current invocation of the agent.

The Subscribe method can also handle an exception returned from the asynchronous task. The
following code example shows how it handles the scenario where the asynchronous action throws an
exception.

C#
private void SyncFailed(Exception ex)
{
 Abort();
}

The SyncFailed method simply calls the BackgroundAgent.Abort method to inform the OS that
the agent is unable to perform its intended task and that it should not be launched again until the
foreground application mitigates the blocking issues and re-enables the agent.

The RunResourceIntensiveTask method uses a similar approach to the one outlined here for the
RunPeriodicTask method.

 93Using Services on the Phone

Manual Synchronization
The user can also initiate the synchronization process by tapping the Sync button on the SurveyList-
View page. This sends a command to the SurveyListViewModel view model which, in turn, starts the
synchronization process. While the synchronization process is running, the application displays an
indeterminate progress indicator because it has no way of telling how long the synchronization pro-
cess will take to complete. If the synchronization process is successful, the SurveyListViewModel class
rebuilds the lists of surveys that are displayed by the SurveyListView page. If the synchronization
process fails with a network error or a credentials error, the SurveyListViewModel class does not re-
build the lists of surveys that are displayed by the SurveyListView page.

For information about how the user initiates the synchronization process from the user interface,
see the section “Commands” in Chapter 2, “Building the Mobile Client."

The SurveyListViewModel class uses Rx to run the synchronization process asynchronously by
invoking the StartSynchronization method in the SurveysSynchronizationService class. When the
synchronization process is complete, the SurveysSynchronizationService class returns a summary of
the synchronization task as a collection of TaskCompletedSummary objects. The view model updates
the UI by using the Observe-OnDispatcher method to run the code on the dispatcher thread. The
following code example shows the StartSync method in the SurveyListViewModel class that inter-
acts with the SurveysSynchronizationService class.

C#
private readonly
 ISurveysSynchronizationService synchronizationService;
...
public void StartSync()
{
 if (this.IsSynchronizing)
 {
 return;
 }

 this.IsSynchronizing = true;
 this.synchronizationService
 .StartSynchronization()
 .ObserveOnDispatcher()
 .Subscribe(this.SyncCompleted);
}

94 chapter three

The SurveysSynchronizationService class uses Rx to handle
the parallel, asynchronous behavior in the synchronization process.
Figure 5 shows the overall structure of the StartSync and Start-
Synchronization methods and how they use Rx to run the synchro-
nization tasks in parallel.

Figure 5
The synchronization methods

The StartSynchronization method in the SurveysSynchroniza-
tionService class uses the Observable.ForkJoin method to define the
set of parallel operations that make up the synchronization process. The
ForkJoin method blocks until all the parallel operations are complete.

The following code example shows the SurveysSynchronization-
Service class, from the TailSpin.PhoneServices project, and includes
an outline of the StartSynchronization method that the SurveyList-
ViewModel class calls. This code implements the set of tasks shown
in Figure 5.

C#
...
using Microsoft.Phone.Reactive;
...

public class SurveysSynchronizationService :
 ISurveysSynchronizationService
{
 ...

Using Rx can make code
that handles asynchronous
operations simpler to
understand and more
compact.

The StartSync method (SurveyListViewModel class) subscribes to:

The StartSynchronization method (SurveysSynchronizationService
 class) that declares:

The getNewSurveys task to get a list of new surveys from the
Tailspin Surveys service and return:
IObservable<TaskCompletedSummary>.

The saveSurveyAnswers task to save completed surveys to the
Tailspin Surveys service and return:
IObservable<TaskCompletedSummary>.

...and uses the ForkJoin method to run these two tasks in parallel
and return: IObservable<TaskCompletedSummary[]>.

...and uses ObserveOnDispatcher method to update the UI with the
information in the TaskCompletedSummary[] array.

 95Using Services on the Phone

 public IObservable<TaskCompletedSummary[]> StartSynchronization()
 {
 var surveyStore = this.surveyStoreLocator.GetStore();

 var getNewSurveys = GetNewSurveys(surveyStore);
 var saveSurveyAnswers = UploadSurveys(surveysStore);

 return Observable.ForkJoin(getNewSurveys, saveSurveyAnswers);
 }
}

The application uses the Funq dependency injection container to create the SurveysSynchronization-
Service instance. For more information, see the ViewModelLocator class.

The StartSynchronization method uses Rx to run the two synchronization tasks asynchronously
and in parallel. When each task completes, it returns a summary of what happened in a TaskComplet-
edSummary object, and when both tasks are complete, the method returns an array of TaskComplet-
edSummary objects from the ForkJoin method.

The getNewSurveys Task
The getNewSurveys task retrieves a list of new surveys from the Tailspin Surveys service and saves
them in isolated storage. When the task is complete, it creates a TaskCompletedSummary object
with information about the task. The following code example shows the partial definition of this task
that breaks down to the following subtasks:

•	 The GetNewSurveys method returns an observable list of SurveyTemplate objects from the
Tailspin Surveys service.

•	 The Select method saves these surveys to isolated storage on the phone, updates the last
synchronization date, and then returns an observable TaskCompletedSummary object.

•	 The Catch method traps any WebException and UnauthorizedAccessException errors and
returns a TaskCompletedSummary object with details of the error.

C#
var getNewSurveys =
 this.surveysServiceClientFactory()
 .GetNewSurveys(surveyStore.LastSyncDate)
 .Select(surveys =>
 {
 surveyStore.SaveSurveyTemplates(surveys);

 if (surveys.Count() > 0)
 {
 surveyStore.LastSyncDate = surveys.Max(s => s.CreatedOn).ToString("s");
 }

 ...

96 chapter three

 return new TaskCompletedSummary
 {
 Task = GetSurveysTask,
 Result = TaskSummaryResult.Success,
 Context = surveys.Count().ToString()
 };
 })
 .Catch(
 (Exception exception) =>
 {
 if (exception is WebException)
 {
 var webException = exception as WebException;
 var summary = ExceptionHandling.GetSummaryFromWebException(
 GetSurveysTask, webException);
 return Observable.Return(summary);
 }

 if (exception is UnauthorizedAccessException)
 {
 return Observable.Return(new TaskCompletedSummary
 {
 Task = GetSurveysTask,
 Result = TaskSummaryResult.AccessDenied
 });
 }

 throw exception;
 });

The saveSurveyAnswers Task
The saveSurveyAnswers task saves completed survey answers to the Tailspin Surveys service and then
removes them from isolated storage to free up storage space on the phone. It returns an observable
TaskCompletedSummary object with information about the task. The following code example shows
the complete definition of this task that breaks down to the following subtasks:

1. The GetCompleteSurveyAnswers method from the SurveyStore class gets a list of com-
pleted surveys from isolated storage.

2. The first call to Observable.Return creates an observable TaskCompletedSummary object
so that the task returns at least one observable object (otherwise, the ForkJoin method may
never complete). This also provides a default value to return if there are no survey answers to
send to the Tailspin Surveys service.

3. The SaveSurveyAnswers method from the SurveysServiceClient class saves the completed
surveys to the Tailspin Surveys service and returns IObservable<Unit> indicating whether
the operation was successful or not.

 97Using Services on the Phone

4. The Select method deletes all the completed surveys from
isolated storage and then returns an observable Task-
CompletedSummary object.

5. The Catch method traps any WebException and
UnauthorizedAccessException errors and returns a Task-
CompletedSummary object with details of the error.

C#
var surveyAnswers = surveyStore.GetCompleteSurveyAnswers();
var saveSurveyAnswers = Observable.Return(
 new TaskCompletedSummary
{
 Task = SaveSurveyAnswersTask,
 Result = TaskSummaryResult.Success,
 Context = 0.ToString()
});

if (surveyAnswers.Count() > 0)
{
 saveSurveyAnswers =
 this.surveysServiceClientFactory()
 .SaveSurveyAnswers(surveyAnswers)
 .Select(unit =>
 {
 var sentAnswersCount = surveyAnswers.Count();
 surveyStore.DeleteSurveyAnswers(surveyAnswers);
 return new TaskCompletedSummary
 {
 Task = SaveSurveyAnswersTask,
 Result = TaskSummaryResult.Success,
 Context = sentAnswersCount.ToString()
 };
 })
 .Catch(
 (Exception exception) =>
 {
 ...
 });
}

Using Live Tiles on the Phone
The Tailspin mobile client must be able to support pinning Tiles to
Start. This section describes how Tailspin designed and implemented
this functionality.

You can have secondary
Tiles for an application on
Start without having an
Application Tile.

98 chapter three

A Tile is a link to an application displayed in Start. There are two types of Tiles:
•	 The Application Tile is the Tile created when a user pins an application to Start. Tapping a

pinned Application Tile navigates the user to the application’s opening page.
•	 A secondary Tile is created programmatically by an application based on an interaction from

the user. A typical use for a secondary Tile is to pin a page other than the homepage to Start,
for quick access. The application’s code provides the Tile with launch parameters to custom-
ize the navigation destination of the Tile. For example, tapping on a secondary Tile that
represents a survey would open the survey in the Tailspin mobile client application.

An Application Tile can be created by the user only when the user taps and holds the application
name in the Application List and then selects pin to start. Therefore, when an Application Tile is cre-
ated, the application is already deactivated. Secondary Tiles can be created only as a result of user input
in the application, and when a secondary Tile is created, the application is deactivated. For more infor-
mation see, “Tiles Overview for Windows Phone,” on MSDN.

Tiles are two-sided and display information by flipping between the front and back sides of the
Tile.

The elements on the front of a Tile are:
•	 A background PNG or JPG image for the Tile that should be 173 pixels wide by 173 pixels

high
•	 A title string that overlays the background image
•	 A count value that overlays the background image; for example, the number of new surveys

available
The elements on the back of a Tile are:
•	 A background PNG or JPG image for the Tile that should be 173 pixels wide by 173 pixels

high
•	 A title string that overlays the background image at the bottom of the Tile
•	 A content string that overlays the background image in the body of the back of the Tile
If none of the properties on the back side of the Tile are set, the Tile will not flip over and only

the front side of the Tile will be displayed. For guidelines about how to design a Tile, see the “Start
Tiles” section in “Essential Graphics, Visual Indicators, and Notifications for Windows Phone” on MSDN.

Overview of the Solution
There are two separate pinning scenarios that Tailspin wanted the mobile client to support:

•	 The mobile client must be capable of pinning an Application Tile to Start that includes a
count of the number of new surveys that have been downloaded since the application was
last opened. Tapping the tile should launch the application. In addition, when the application
is deactivated, the count value on the Application Tile should be reset.

•	 The mobile client must be capable of pinning surveys to secondary Tiles on Start. Each
secondary Tile should contain a title string that represents the survey name. Tapping the tile
should launch the application and navigate the user to the page containing the survey.

Based upon these scenarios, it was not necessary to use two-sided tiles.

Inside the Implementation
Now is a good time to walk through the code that implements live tiles in more detail. As you go
through this section, you may want to download the Windows Phone Tailspin Surveys application from
the Microsoft Download Center.

 99Using Services on the Phone

The Application Tile
The RunPeriodicTask method of the ScheduledAgent class calls the
GetNewSurveys method of the SurveysSynchronization class. The
GetNewSurveys method downloads new surveys from the Tailspin
cloud service through the background agent. In addition, it is respon-
sible for updating the Application Tile Count property that represents
the number of new surveys that have been downloaded since the ap-
plication was last opened. The following code example shows the
GetNewSurveys method.

C#
public IObservable<TaskCompletedSummary>
 GetNewSurveys(ISurveyStore surveyStore)
{
 var getNewSurveys =
 surveysServiceClientFactory()
 .GetNewSurveys(surveyStore.LastSyncDate)
 .Select(surveys =>
 {
 surveyStore.SaveSurveyTemplates(surveys);

 ...

 var tile = ShellTile.ActiveTiles.First();
 var tileData = new StandardTileData()
 {
 Count = this.UnopenedSurveyCount
 };
 tile.Update(tileData);

 ...
 })
 ...

 return getNewSurveys;
}

The method retrieves the Tile for the application and then up-
dates the Count property of the Tile to the value of the Unopened-
SurveyCount property, which is the number of surveys that have
been downloaded since the mobile client application was deactivated,
before updating the Tile on Start.

The UnopenedSurveyCount property simply retrieves the value
of the UnopenedCount property in the SurveysList class. The Get-
NewSurveys method calls the SaveSurveyTemplates method to save
the newly downloaded surveys and the SaveSurveyTemplates meth-
od updates the UnopenedCount property. The following code ex-
ample shows the SaveSurveyTemplates method.

Downloaded surveys are
marked as new until the
user has opened them. Then
they are marked as read.

100 chapter three

C#
public void SaveSurveyTemplates(IEnumerable<SurveyTemplate> surveys)
{
 foreach (var s in surveys)
 {
 s.IsNew = true;
 }

 var newSurveys = surveys.Where(ns => !AllSurveys.Templates.Any(
 s => s.SlugName == ns.SlugName && s.Tenant == ns.Tenant));

 AllSurveys.UnopenedCount += newSurveys.Count();
 SaveUnopenedCount();

 AllSurveys.Templates.AddRange(newSurveys);
 SaveTemplates();
}

The method marks each downloaded survey as new, through the SurveyTemplate.IsNew property.
It then builds a collection of new surveys before incrementing the UnopenedCount property of the
AllSurveys collection by the number of surveys in the newSurveys collection. The call to the Save-
UnopenedCount method saves the value of the UnopenedCount property to isolated storage.

As has been previously mentioned, the count value on the Application Tile represents the number
of new surveys that have been downloaded since the application was last opened. When the mobile
client application is closed by the user navigating backwards past the first page of the application, the
ResetUnopenedSurveyCount method of the SurveyListViewModel is called, which resets the count
value on the Application Tile. The following code example shows the ResetUnopenedSurveyCount
method.

C#
public void ResetUnopenedSurveyCount()
{
 synchronizationService.UnopenedSurveyCount = 0;
 var tile = shellTile.ActiveTiles.First();
 var tileData = new StandardTileData()
 {
 Count = 0
 };
 tile.Update(tileData);
}

The method resets the UnopenedSurveyCount property of the SurveysSynchronizationService
class to 0, which updates both the AllSurveys collection and isolated storage. The method then re-
trieves the Application Tile for the application and resets the Count property of the Tile to 0, before
updating the Tile on Start.

 101Using Services on the Phone

Secondary Tiles
Surveys can be pinned to Start as secondary Tiles from two locations in the mobile client application.

•	 From a context MenuItem on each survey in the SurveyListView. This binds to the Pin-
Command property in the SurveyTemplateViewModel class.

•	 From an ApplicationBarButtonCommand in the TakeSurveyView. This binds to the Pin-
Command property in the TakeSurveyViewModel.

The following code example shows the initialization of the PinCommand property from the
SurveyTemplateViewModel class, and the Actions executed by it.

C#
private readonly IShellTile shellTile;
public DelegateCommand PinCommand { get; set; }
...

public SurveyTemplateViewModel(
 SurveyTemplate surveyTemplate,
 INavigationService navigationService,
 IPhoneApplicationServiceFacade phoneApplicationServiceFacade,
 IShellTile shellTile,
 ILocationService locationService)
{
 ...
 this.shellTile = shellTile;
 ...

 this.PinCommand = new DelegateCommand(PinToStart, () => IsPinnable);
 ...
}

public bool IsPinnable
{
 get
 {
 return shellTile.ActiveTiles.FirstOrDefault(
 x => x.NavigationUri.ToString() ==
 string.Format(Constants.PinnedSurveyUriFormat,
 this.Template.SlugName)) == null;
 }
}

public void PinToStart()
{
 var tile = shellTile.ActiveTiles.FirstOrDefault(
 x => x.NavigationUri.ToString() ==
 string.Format(Constants.PinnedSurveyUriFormat,
 this.Template.SlugName));

102 chapter three

 if (tile == null)
 {
 var tileData = new StandardTileData
 {
 Title = this.Template.Title,
 BackgroundImage = new Uri("/Background.png", UriKind.Relative)
 };

 shellTile.Create(new Uri(string.Format(
 Constants.PinnedSurveyUriFormat, this.Template.SlugName),
 UriKind.Relative), tileData);
 }
}

In the SurveyTemplateViewModel constructor the PinCommand is initialized so that its execute
Action is set to the PinToStart method, and it can execute Action is set to the IsPinnable property.

The IsPinnable property checks to see if the survey is already pinned to Start by comparing the
NavigationUri of each secondary Tile to a string that will be the NavigationUri of the survey. If the two
match, the property is set to false and the user will not be given the option to pin the survey.

The PinToStart method checks if the survey is already pinned to Start by comparing the Navigation-
Uri of each secondary Tile to a string that will be the NavigationUri of the survey. If the survey is not
present on Start, a new secondary Tile is pinned to Start by a call to shellTile.Create. The Tile data in-
cludes a title string and a background image. A launch parameter is also specified in order to specify that
the navigation destination of the Tile is the survey represented by its SlugName.

When the user attempts to pin a survey from the TakeSurveyView, the PinCommand in the Take-
SurveyViewModel class examines the IsPinnable property in the SurveyTemplateViewModel class to
see if the survey can be pinned and if it can be, the PinToStart method in the SurveyTemplateView-
Model class is executed.

The following code example shows the OnNavigatedTo method in the TakeSurveyView class.
When the user taps on a secondary Tile, this method is called.

C#
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 if (((TakeSurveyViewModel)this.DataContext).TemplateViewModel == null)
 {
 string surveyId;
 if (NavigationContext.QueryString.ContainsKey("surveyID"))
 {
 surveyId = NavigationContext.QueryString["surveyID"];
 }
 else
 {
 surveyId = (string)PhoneApplicationService.Current.State["TakeSurveyId"];
 }

 103Using Services on the Phone

 ((TakeSurveyViewModel)this.DataContext).Initialize(surveyId);
 }
}

This method checks whether the page is being navigated to from
the secondary Tile by checking if the TemplateViewModel is null. If
it is, it checks if the QueryString contains a surveyID and retrieves
the surveyID from the QueryString if this is the case. Otherwise, it
retrieves the surveyID from the application state dictionary. It then
initializes the DataContext by calling an overload of the Initialize
method that takes the surveyID as a parameter. The outcome is that
the specified survey is loaded and navigated to.

Using Location Services on the Phone
Tailspin would like to capture users locations when they are answering
a survey and include this location information as part of the survey
data that’s sent to the Tailspin service when the synchronization pro-
cess runs. Tenants can use the location information when they analyze
the survey results.

Overview of the Solution
The Windows Phone API includes a Location Service that wraps the
available hardware on the phone and enables your application to eas-
ily access location data. However, there is a trade-off between the
accuracy of the data you can obtain from the Location Service and
your application’s power consumption. Tailspin does not require
highly accurate location data for their surveys, so they have optimized
the Surveys mobile client application to minimize power consumption.

The developers at Tailspin also decided that it is more important
to save the survey data quickly and reliably, and not wait if the loca-
tion data is not currently available. It can take up to 120 seconds to
get location data back from the Location Service. Therefore, if the
Location Service doesn’t have the location data when the Tailspin
mobile client application requests it, the latest available location data
is saved along with the survey answers, instead of waiting for new
data. Furthermore, the application only asks the Location Service for
location data when the Surveys application needs it to save with a
survey, although in some applications, you might consider caching the
available location data at fixed intervals.

Higher accuracy in location
data requires higher power
consumption.

The Tailspin Surveys
website displays
survey location
data using a Bing®
search engine maps
control. For more
information, see the
SuveyLocation.ascx
file in the TailSpin.
Web project. There
is also a Bing maps
control available for
Windows Phone.

You could also create a
dummy implementation
of the ILocationService
interface that returns
a fixed location to
use in the emulator.
Alternatively, you can
simulate location data
using the location
sensor simulator in the
emulator.

104 chapter three

The sample application asks the user’s permission to collect loca-
tion data in the AppSettingsView page. In your own application,
you must obtain the user’s consent before collecting and using
location data, typically on an initial settings screen when the ap-
plication first runs. You should also make sure that your applica-
tion can continue to function if the user disables the Location
Service or doesn’t give their consent for your application to use
the phone’s location data.

Inside the Implementation
Now is a good time to walk through the code that acquires location
data from the phone in more detail. As you go through this section,
you may want to download the Windows Phone Tailspin Surveys ap-
plication from the Microsoft Download Center.

The following code example shows the ILocationService inter-
face from the TailSpin.PhoneServices project.

C#
public interface ILocationService
{
 GeoCoordinate TryToGetCurrentLocation();
 void StartWatcher();
 void StopWatcher();
}

The TryToGetCurrentLocation method returns a GeoCoordinate
object that holds the location data. The LocationService class imple-
ments this interface.

The LocationService class uses the GeoCoordinateWatcher-
Adapter class from the TailSpin.Phone.Adapters project to retrieve
the current location from the phone when the user starts a survey and
when the user completes a survey. The GeoCoordinateWatcher-
Adapter class implements the IGeoCoordinateWatcher interface and
adapts the GeoCoordinateWatcher class from the Windows Phone
API in order to create a loosely coupled class that is testable. Tailspin
does not require highly accurate location data in the Surveys applica-
tion, so the ContainerLocator class initializes the GeoCoordinate-
WatcherAdapter class using the default accuracy. This gives the phone
the opportunity to reduce its power consumption and to return loca-
tion data more quickly. The following code example shows the initial-
ization of the GeoCoordinateWatcherAdapter class in the Container-
Locator class.

It’s up to the phone to
determine the optimal
way to obtain the phone’s
location: using the available
data from the Global
Positioning System (GPS)
receiver, using cellular
triangulation, or using
Wi-Fi data.

 105Using Services on the Phone

C#
private void ConfigureContainer()
{
 ...
 this.Container.Register<IGeoCoordinateWatcher>(c =>
 new GeoCoordinateWatcherAdapter(GeoPositionAccuracy.Default));
 ...
}

The StatusChanged event in GeoCoordinateWatcherAdapter class indicates that the status of
the GeoCoordinateWatcherAdapter object has changed. The status could be Ready, Initializing,
NoData, or Disabled. The GeoCoordinateWatcherAdapter class uses the StatusChanged event to
indicate the ability of the location provider to provide location updates. The following code example
shows the TryToGetCurrentLocation, StartWatcher, and StopWatcher methods from the Location-
Service class.

C#
private readonly TimeSpan maximumAge = TimeSpan.FromMinutes(15);
private GeoCoordinate lastCoordinate = GeoCoordinate.Unknown;
private DateTime lastCoordinateTime;
private IGeoCoordinateWatcher geoCoordinateWatcher;
...

public GeoCoordinate TryToGetCurrentLocation()
{
 if (!settingsStore.LocationServiceAllowed)
 {
 return GeoCoordinate.Unknown;
 }

 if (geoCoordinateWatcher.Status == GeoPositionStatus.Ready)
 {
 lastCoordinate = geoCoordinateWatcher.Position.Location;
 lastCoordinateTime = geoCoordinateWatcher.Position.Timestamp.DateTime;
 return lastCoordinate;
 }

 if (maximumAge < (DateTime.Now - lastCoordinateTime))
 {
 return GeoCoordinate.Unknown;
 }
 else
 {
 return lastCoordinate;
 }
}

106 chapter three

public void StartWatcher()
{
 this.geoCoordinateWatcher.Start();
}

public void StopWatcher()
{
 this.geoCoordinateWatcher.Stop();
}

The TryToGetCurrentLocation method only returns location data if the user has given consent
for Tailspin to use location data obtained from the phone; otherwise, GeoCoordinate.Unknown is
returned. If the user has given consent for Tailspin to use location data, the location and the time the
location was acquired are obtained from the GeoCoordinateWatcherAdapter class, provided that the
Status property of the GeoCoordinateWatcherAdapter class is GeoPositionStatus.Ready. If the
Status property of the GeoCoordinateWatcherAdapter class is not GeoPositionStatus.Ready, the
method returns the last available location data, provided that it was obtained within the last 15 min-
utes. Otherwise, it returns GeoCoordinate.Unknown.

The StartWatcher and StopWatcher methods are used by the TakeSurveyViewModel class to
initiate and stop the acquisition of data from the current location provider, respectively.

Acquiring Image and Audio Data on the Phone
The Tailspin Surveys mobile client application allows users to capture images from the device’s camera
and record audio from the device’s microphone as answers to survey questions. The application saves
the captured data as part of the survey answer, and this data is sent to the Tailspin Surveys web service
when the user synchronizes the mobile client application.

The mobile client application can capture image and audio data.

Overview of the Solution
The techniques you use to capture audio and image data are different. To capture image data from the
camera, you use a “chooser,” and to capture audio data from the microphone, you must use interop
with the XNA® development platform framework on the phone.

Capturing Image Data
The chooser for capturing image data is the CameraCaptureTask. When you use a chooser, the oper-
ating system deactivates your application and runs the chooser as a new process. When the chooser
has completed its task, the operating system reactivates your application and delivers any data to your
application using a callback method. The developers at Tailspin chose to implement this using the
Observable class from the Rx library on the phone. The Tailspin Surveys mobile client application
saves the captured picture to isolated storage along with the other survey answers and also displays
the picture in the view.

 107Using Services on the Phone

Recording Audio Data
To access the microphone on the Windows Phone device, you have to use XNA; it’s not possible to
access it directly from Silverlight. To interoperate with XNA, you must use an XNA asynchronous
event dispatcher to connect to the XNA events from Silverlight. Your application can then handle the
microphone events that deliver the raw audio data to your application. Your application must then
convert or encode the audio data to a valid sound format before saving it in isolated storage.

Inside the Implementation
Now is a good time to take a more detailed look at the code that captures image data and records
audio.

As you go through this section, you may want to download the Windows Phone Tailspin Surveys
application from the Microsoft Download Center.

Capturing Image Data
The ICameraCaptureTask interface in the TailSpin.PhoneClient.Adapters project defines signatures
for a property, an event, and a method. The following code example shows this interface.

C#
public interface ICameraCaptureTask
{
 SettablePhotoResult TaskEventArgs
 {
 get;
 set;
 }

 event EventHandler<SettablePhotoResult> Completed;

 void Show();
}

The ICameraCaptureTask interface is implemented by the CameraCaptureTaskAdapter class,
which adapts the CameraCaptureTask class from the API. The purpose of adapting the CameraCapture-
Task class with a class that implements ICameraCaptureTask is to create a loosely coupled class that is
testable. The following code example shows the class.

C#
public class CameraCaptureTaskAdapter : ICameraCaptureTask
{
 public CameraCaptureTaskAdapter()
 {
 WrappedSubject = new CameraCaptureTask();
 ...
 }

 private CameraCaptureTask WrappedSubject { get; set; }

108 chapter three

 public SettablePhotoResult TaskEventArgs
 {
 get
 {
 return new SettablePhotoResult(WrappedSubject.TaskEventArgs);
 }
 set
 {
 WrappedSubject.TaskEventArgs = value;
 }
 }

 public event EventHandler<SettablePhotoResult> Completed;

 ...

 public void Show()
 {
 WrappedSubject.Show();
 }

 ...
}

The SettablePhotoResult class provides an implementation of the PhotoResult class where the
ChosenPhoto and OriginalFileName properties are settable. The following code example shows the
class.

C#
public class SettablePhotoResult : PhotoResult
{
 public SettablePhotoResult(PhotoResult photoResult)
 {
 ChosenPhoto = photoResult.ChosenPhoto;
 OriginalFileName = photoResult.OriginalFileName;
 Error = photoResult.Error;
 }

 public SettablePhotoResult()
 {
 }

 public new Stream ChosenPhoto { get; set; }
 public new string OriginalFileName { get; set; }
 public new Exception Error { get; set; }
}

 109Using Services on the Phone

When TakeSurveyViewModel creates an instance of the Picture-
QuestionViewModel class, it passes in a new instance of the Camera-
CaptureTaskAdapter class, which in turn creates an instance of the
CameraCaptureTask class.

The following code example shows how the CameraCapture-
Command delegate command is defined in the constructor for the
PictureQuestionViewModel class. This command uses the Capturing
property to check whether the application is already in the process of
capturing a picture and to control whether the command can be in-
voked from the UI. The method displays a picture if there is already
one saved for this question.

The method then uses the CameraCaptureTaskAdapter instance,
which will launch the chooser for taking the photograph and return
the captured picture.

C#
private readonly ICameraCaptureTask task;
...

public PictureQuestionViewModel(QuestionAnswer questionAnswer,
 ICameraCaptureTask cameraCaptureTask, IMessageBox messageBox)
 : base(questionAnswer)
{
 this.CameraCaptureCommand =
 new DelegateCommand(this.CapturePicture,
 () => !this.Capturing);
 if (questionAnswer.Value != null)
 {
 this.LoadPictureBitmap(questionAnswer.Value);
 }
 this.task = cameraCaptureTask;
 ...
}

public DelegateCommand CameraCaptureCommand { get; set; }
...

public bool Capturing
{
 get { return this.capturing; }
 set
 {
 if (this.capturing != value)
 {
 this.capturing = value;
 this.RaisePropertyChanged(() => this.Capturing);

You can use the
Exchangeable Image File
(EXIF) data in the picture
to determine the correct
orientation for displaying
the picture.

110 chapter three

 }
 }
}

...

private void CapturePicture()
{
 if (!this.Capturing)
 {
 this.task.Show();
 this.Capturing = true;
 this.CameraCaptureCommand.RaiseCanExecuteChanged();
 }
}

The following code examples show how the constructor uses the Observable.FromEvent
method to specify how to handle the Completed event raised by the CameraCaptureTask chooser
object when the user has finished with the chooser. The first example shows how the application saves
the picture if the CameraCaptureTask succeeds.

C#
Observable.FromEvent<SettablePhotoResult>(
 h => this.task.Completed += h,
 h => this.task.Completed -= h)
 .Where(e => e.EventArgs.ChosenPhoto != null)
 .Subscribe(result =>
 {
 this.Capturing = false;
 SavePictureFile(result.EventArgs.ChosenPhoto);
 this.Answer.Value = this.fileName;
 this.RaisePropertyChanged(string.Empty);
 this.CameraCaptureCommand.RaiseCanExecuteChanged();
 });

The second example shows how the CameraCaptureCommand command is re-enabled if the
user didn’t take a picture.

C#
Observable.FromEvent<SettablePhotoResult>(
 h => this.task.Completed += h,
 h => this.task.Completed -= h)
 .Where(e => e.EventArgs.ChosenPhoto == null &&
 e.EventArgs.Error == null)
 .Subscribe(p =>
 {
 this.Capturing = false;
 this.CameraCaptureCommand.RaiseCanExecuteChanged();
 });

 111Using Services on the Phone

The third example shows how a message box containing an error
message is displayed to the user, if the CameraCaptureTask fails.

C#
Observable.FromEvent<SettablePhotoResult>(
 h => this.task.Completed += h,
 h => this.task.Completed -= h)
 .Where(e => e.EventArgs.Error != null &&
 !string.IsNullOrEmpty(e.EventArgs.Error.Message))
 .Subscribe(p =>
 {
 this.Capturing = false;
 this.messageBox.Show(p.EventArgs.Error.Message);
 this.CameraCaptureCommand.RaiseCanExecuteChanged();
 });

The SavePictureFile method uses an efficient approach to per-
sisting the captured image to isolated storage, which avoids writing a
single byte of the image to the file during each iteration of a loop. This
has the additional advantage of not requiring a progress indicator to
inform the user of progress through the save process. The following
code example shows the method.

C#
private void SavePictureFile(Stream chosenPhoto)
{
 SavingPictureFile = true;

 // Store the image bytes.
 byte[] imageBytes = new byte[chosenPhoto.Length];
 chosenPhoto.Read(imageBytes, 0, imageBytes.Length);

 // Seek back so we can create an image.
 chosenPhoto.Seek(0, SeekOrigin.Begin);

 // Create an image from the stream.
 var imageSource = PictureDecoder.DecodeJpeg(chosenPhoto);
 this.Picture = imageSource;

 // Save the stream
 var isoFile = IsolatedStorageFile.GetUserStoreForApplication();
 using (var stream = isoFile.CreateFile(filename))
 {
 stream.Write(imageBytes, 0, imageBytes.Length);
 }

 SavingPictureFile = false;
}

Using Rx means we can
filter on just the events
and event parameter values
that we’re interested in
by using simple LINQ
expressions—all in compact
and easy-to-read code.

112 chapter three

The drawback with this method is that the CameraCaptureTask
class returns a high resolution image, which the SavePictureFile
method simply writes to a file. The PictureQuestionViewModel also
displays the captured image. However, since high-resolution images
consume a lot of memory, the mobile application client crashes when
a survey contains too many picture questions containing captured
images. An alternative approach would be to use the CameraCapture-
Task class for image capture, and then reduce the resolution of the
captured image before consuming it. Another alternative approach
would to be to use the PhotoCamera API class for image capture, and
configure the capture resolution prior to capturing images.

Using XNA Interop to Record Audio
Before the Tailspin mobile client application can handle events raised
by XNA objects, such as a Microphone object, it must create an XNA
asynchronous dispatcher service. The following code example from
the VoiceQuestionViewModel class shows how this is done.

C#
...
private XnaAsyncDispatcher xnaAsyncDispatcher;
...

public VoiceQuestionViewModel(QuestionAnswer questionAnswer,
 IIsolatedStorageFacade isolatedStorageFacade,
 INavigationService navigationService)
 : base(questionAnswer)
{
 ...
 xnaAsyncDispatcher = new XnaAsyncDispatcher(
 TimeSpan.FromMilliseconds(50)));
 xnaAsyncDispatcher.StartService();
 ...
}

The VoiceQuestionView.xaml file defines two buttons, one tog-
gles recording on and off, and the other plays back any saved audio.
The recording toggle button is bound to the DefaultActionCommand
command in the view model, and the play button is bound to the
PlayCommand command in the view model.

The DefaultAction command uses the StartRecording and Sto-
pRecording methods in the VoiceQuestionViewModel class to start
and stop audio recording. The following code example shows the
StartRecording method.

If your application is
camera intensive, you
should consider using
the PhotoCamera API
class, which allows you to
configure functionality such
as image capture, focus,
resolution, and flash mode.

 113Using Services on the Phone

C#
private MediaState priorMediaState;
...

private void StartRecording()
{
 StopPlayback();

 priorMediaState = MediaPlayer.State;
 if (priorMediaState == MediaState.Playing)
 {
 MediaPlayer.Pause();
 }

 var mic = Microphone.Default;
 if (mic.State == MicrophoneState.Started)
 {
 mic.Stop();
 }

 this.stream = new MemoryStream();

 buffer = new byte[mic.GetSampleSizeInBytes(mic.BufferDuration)];

 this.observableMic = Observable.FromEvent<EventArgs>(
 h => mic.BufferReady += h, h => mic.BufferReady -= h)
 .Subscribe(p => this.CaptureMicrophoneBufferResults());
 mic.Start();
}

This method determines if a media item is being played, and if it is, the media item is paused. The
method then gets a reference to the default microphone on the device and creates a MemoryStream
instance to store the raw audio data.

You can find the Microphone class in the Microsoft.Xna.Framework.Audio namespace.

The method uses the Observable.FromEvent method to subscribe to the microphone’s Buffer-
Ready event, and whenever the event is raised, the application calls CaptureMicrophoneBuffer-
Results to capture the raw audio data. Finally, the method starts the microphone.

The following code example shows the StopRecording method. It creates a WaveFormatter in-
stance to convert the raw audio data to the WAV format before using the instance to write the audio
data to isolated storage. It then disposes of the MemoryStream, Microphone, and WaveFormatter
instances and attaches the name of the saved audio files to the question. Finally, if a media item was
playing and was paused when the StartRecording method was called, the method resumes playback
of the media item.

114 chapter three

C#
private MediaState priorMediaState;
...

private void StopRecording()
{
 var mic = Microphone.Default;
 this.CaptureMicrophoneBufferResults();
 mic.Stop();

 this.formatter = new WaveFormatter(this.wavFileName,
 (ushort)mic.SampleRate, 16, 1, isolatedStorageFacade);
 this.formatter.WriteDataChunk(stream.ToArray());

 this.stream.Dispose();
 this.observableMic.Dispose();
 this.formatter.Dispose();
 this.formatter = null;
 this.buffer = null;
 this.Answer.Value = this.wavFileName;

 if (priorMediaState == MediaState.Playing)
 {
 MediaPlayer.Resume();
 }
}

The play button in the VoiceQuestionView view plays the re-
corded audio by using the SoundEffect class from the Microsoft.
Xna.Framework.Audio namespace. The following code example
shows the Play method from the VoiceQuestionViewModel class
that loads audio data from isolated storage and plays it back. Before
loading and playing audio data from isolated storage, the method
determines if a media item is already being played, and if it is, the
media item is paused. Once playback of the audio data has finished,
the method resumes playback of the original media item.

C#
private MediaState priorMediaState;
...

private void Play()
{
 priorMediaState = MediaPlayer.State;
 if (priorMediaState == MediaState.Playing)

The Windows Phone
API does not include any
methods to convert audio
formats. You can find the
WaveFormatter class in
the TailsSpin.PhoneClient.
Infrastructure namespace.

 115Using Services on the Phone

 {
 MediaPlayer.Pause();
 }

 fileSystem = IsolatedStorageFile.GetUserStoreForApplication();

 fileStream = fileSystem.OpenFile(this.wavFileName, FileMode.Open,
 FileAccess.Read);

 try
 {
 soundEffect = SoundEffect.FromStream(fileStream);
 soundEffectInstance = soundEffect.CreateInstance();
 soundEffectInstance.Play();
 }
 catch (ArgumentException)
 {
 }

 if (priorMediaState == MediaState.Playing)
 {
 MediaPlayer.Resume();
 }
}

Logging Errors and Diagnostic Information on the Phone
The sample application does not log any diagnostic information or details of error conditions from the
Tailspin mobile client application. Tailspin plans to add this functionality to a future version of the
mobile client application after they evaluate a number of tradeoffs.

For example, Tailspin must decide whether to keep a running log on the phone or simply report
errors to a service as and when they occur. Keeping a log on the phone will use storage, so Tailspin
would have to implement a mechanism to manage the amount of isolated storage used for log data,
perhaps by keeping rolling logs of recent activity or implementing a purge policy. Sending error data
as it occurs minimizes the storage requirements, but it makes it harder to access data about the state
of the application before the error occurred. Tailspin would also need to develop a robust way to send
the error information to a service, while transferring log files could take place during the application’s
standard synchronization process. Collecting logs also makes it easier to correlate activities on the
phone with activities in the various Tailspin Surveys services.

Tailspin must also consider the user experience. A privacy policy would require a user to opt into
collecting diagnostic information, and Tailspin might want to include options that would enable users
to set the level of logging detail to collect.

116 chapter three

Conclusion
This chapter described how the developers at Tailspin implemented the model elements from the
MVVM pattern in the Tailspin Surveys mobile client application, and how the application leverages
services offered by the Windows Phone platform, such as isolated storage and location services.

The developers at Tailspin also created some services themselves; for example, they created the
synchronization service that runs both in the background, and in the foreground as a set of asynchro-
nous parallel tasks that manage the data used by the application. This synchronization service needs
to access data held remotely by the Tailspin Surveys application that runs on the Windows Azure™
technology platform. The next chapter will describe how the mobile client application can access
remote services like the one that provides access to the data held in the Windows Azure application.

Questions

1. The Data Protection API (DPAPI) can be used to encrypt and decrypt data in isolated
storage. What does the DPAPI use as an encryption key?

a. A user-generated private key.
b. The user credentials.
c. The phone credentials.
d. The user and phone credentials.

2. What happens when your application is reactivated?
a. You return to the first screen in your application.
b. The operating system makes sure that the screen is displayed as it was when the

application was deactivated.
c. The operating system recreates the navigation stack within your application.
d. The Launching event is raised.

3. What data should you save when you handle the deactivation request?
a. State data required to rebuild the state of the last screen that was active before the

application was deactivated.
b. State data required to rebuild the state of previous screens that user had navigated

through before the application was deactivated.
c. Data that is normally persisted to isolated storage by the application at some point.
d. The currently active screen.

4. Why does Tailspin use the Reactive Extensions (Rx) for .NET?
a. To handle notifications from the Microsoft Push Notification Service.
b. To handle UI events.
c. To manage asynchronous tasks.
d. To make the code that implements the asynchronous and parallel operations more

compact and easier to understand.

 117Using Services on the Phone

5. What factors should you consider when you use location services on the phone?
a. What level of accuracy your application requires for its geo-location data.
b. Whether the device has a built-in Global Positioning System (GPS).
c. How quickly you need to obtain the current location.
d. Whether the user has consented to allowing your application to use the phone’s GPS

data.
6. Which factors constrain the use of a ResourceIntensiveTask agent?

a. Resource-intensive agents do not run unless the Windows Phone device is connected
to an external power source.

b. Resource-intensive agents do not run unless the Windows Phone device has a net-
work connection over Wi-Fi or through a connection to a PC.

c. Resource-intensive agents do not run unless the Windows Phone device’s battery
power is greater than 90%.

d. Resource-intensive agents do not run unless the Windows Phone device screen is
locked.

More Information
For more information about isolated storage, see “Local Data Storage for Windows Phone” on MSDN.
For more information about handling deactivation, reactivation, and tombstoning, see “Execution
Model for Windows Phone” on MSDN.
For more information about launchers and choosers, see “Launchers and Choosers for Windows
Phone” on MSDN.
For more information about Reactive Extensions, see “Reactive Extensions for .NET Framework
Overview for Windows Phone” and “The Reactive Extensions (Rx)” on MSDN.
For more information about location services, see “Location for Windows Phone” on MSDN.
These and all links in this book are accessible from the book’s online bibliography. You can find the
bibliography on MSDN at: http://msdn.microsoft.com/en-us/library/gg490786.aspx.

 119

This chapter describes the various ways that the Tailspin Surveys mo-
bile client interacts with external services, both custom services cre-
ated by Tailspin, and services offered by third-party companies. Con-
necting to external services from a mobile client introduced a set of
challenges for the development team at Tailspin to meet in the design
and implementation of the mobile client, and in the services hosted in
Windows Azure™ technology platform. The mobile client application
must do the following:

•	 It must operate reliably with variable network connectivity.
•	 It must minimize the use of network bandwidth (which may

be costly).
•	 It must minimize its impact on the phone’s battery life.
The online service components must do the following:
•	 They must offer an appropriate level of security.
•	 They must be easy to develop client applications against.
•	 They must support a range of client platforms.
The key areas of functionality in the Tailspin Surveys application

that this chapter describes include authenticating with a web service
from an application on the phone, pushing notifications to Windows®
Phone devices, and transferring data between a Windows Phone de-
vice and a web service.

Authenticating with the Surveys Service
The Surveys service running in Windows Azure needs to know the
identity of the user who is using the mobile client application on the
Windows Phone device for two reasons. First, when the mobile client
requests a list of surveys, the service determines the contents of the
list based on the preferences stored in the user’s profile. Second,
when the mobile client submits a set of survey answers, the Surveys
service needs to record who submitted the survey in order to be able
to calculate any rewards due the user.

4 Connecting with Services

The Windows Azure-based
Surveys service needs to
identify the user using the
mobile client application.

120 chapter four

Goals and Requirements
Tailspin wants to externalize as much as possible of the authentica-
tion and authorization functionality from the main Surveys applica-
tion. This will give Tailspin the flexibility to make changes to the way
they handle authentication and authorization in the future without
affecting the Surveys application itself. For example, Tailspin may
want to enable users to identify themselves by using a Windows
Live® ID.

It’s also important to ensure that the mechanism the mobile client
uses to authenticate is easy to implement on the Windows Phone
platform and any other mobile platforms that Tailspin may support in
the future.

Overview of the Solution
Figure 1 shows a high-level view of the approach adopted by Tailspin.

Tailspin wants to be able to
change the way it authenti-
cates users without requiring
major changes to the Surveys
application.

Figure 1
Authentication and authorization for the Surveys web services

The approach that Tailspin adopted assumes that the Windows
Phone client application can send credentials to the Surveys web ser-
vice in an HTTP header. The credentials could be a user name and
password or a token. Tailspin could easily change the type of credentials
in a future version of the application.

Windows
Phone
Device

Surveys
Web
Service

Tailspin
Surveys
Core

Custom
Authentication
and
Authorization
Interceptor

Windows
Identity
Foundation

1. HTTP Request
plus credentials
in authorization
header

2. Extract
authorization
header

3. Validate credentials and
build IClaimsPrincipal

4. Return IClaimsPrincipal

5. G
et d

ata
 (filt

er b
y

IClai
msPrin

cipa
l.Cla

ims)

6. Re
turn

data

7. Return data

Windows Azure

 121Connecting with Services

In the sample application, the phone sends a user name and pass-
word to demonstrate this approach. The mobile client does not
perform any validation on the credentials that the user enters on
the AppSettingsView page, but it does encrypt the password be-
fore it saves the credentials in isolated storage. In a real applica-
tion, you may decide to enforce a password policy that requires
strong passwords and regular password renewals.

In the Surveys web service, the custom authentication and autho-
rization interceptor extracts the header that contains the user’s cre-
dentials and identifies an authentication module to perform the au-
thentication. It’s possible that different client platforms use different
authentication schemes, so the interceptor must be able to identify
from the HTTP headers which type of authentication is being used,
and then pass the credentials to the correct custom authentication
module.

The sample application uses a mock authentication module that
simply checks for one of several hard-coded user names; it does
not verify the password. If you use password-based credentials in
your application, you should send a hashed version of the pass-
word over the network to compare with a hashed version stored in
Windows Azure storage in your authentication module.

After the custom authentication module validates the credentials,
it uses Windows Identity Foundation (WIF) to construct an IClaims-
Principal object that contains the user’s identity. In the future, this
IClaimsPrincipal object might contain additional claims that the
Surveys application could use to perform any authorization it requires.

The surveys web service includes the IClaimsPrincipal.Claims.
Name value when it invokes any methods in the Tailspin Surveys core
application. The Tailspin Surveys core application returns data for the
user. In the future, the web service could also perform any necessary
authorization before it invokes a method in the core application.

Tailspin must be able to
handle authentication from
other mobile platforms in
the future, so choosing a
flexible, standards-based
approach to authentication
is crucial.

To change the authentication method for the mobile client application, Tailspin
must make two changes to the application; they must:
1. Modify the mobile client to send the credentials in a custom HTTP header.
2. Add a new custom authentication module to validate the credentials and
create an IClaimsPrincipal object.

122 chapter four

A Future Claims-Based Approach
In the future, Tailspin is considering replacing the simple user name
and password authentication scheme with a claims-based approach.
One option is to use Simple Web Token (SWT) and the Open Au-
thentication (OAuth) 2.0 protocol. This approach offers the following
benefits:

•	 The authentication process is managed externally from the
Tailspin Surveys application.

•	 The authentication process uses established standards.
•	 The Surveys application can use a claims-based approach to

handle any future authorization requirements.
Figure 2 illustrates this approach, showing the external token is-

suer.
When Tailspin developers
were developing the mobile
client, new versions of the
OAuth and SWT standards
were anticipated, so they
decided to wait for these
new releases.

Figure 2
An authentication approach using SWT for the Surveys web service

In this scenario, before the mobile client application invokes a
Surveys web service, it must obtain an SWT. It does this by sending a
request to a token issuer that can issue SWTs; for example, Windows
Azure Access Control Services (ACS). The request includes the items
of information described in the following table.

Windows Phone
Mobile Client
Application

Token Issuer

Tailspin Surveys
web service

shared
Key

1. Request Simple Web Token

2. Return Simple Web Token

3. Request Data

4. Return Data

 123Connecting with Services

Field Description

Client ID The client ID is an identifier for the consumer application,
which is the Surveys service in this case.

Client Secret A piece of information that proves that it is your application.

User Name The user name of the person who wants to authenticate with
the Surveys service. The application will prompt the user to
enter this name in the user interface (UI).

Password The user’s password. The application will prompt the user to
enter this password in the UI.

The client ID and client secret enable the issuer to determine
which application is requesting an SWT. The issuer uses the user name
and password to authenticate the user.

The token issuer then constructs an SWT containing the user’s
identity and any other claims that the consumer application (Tailspin
Surveys) might require. The issuer also attaches a hash value generated
using a secret key shared with the Tailspin Surveys service.

When the client application requests data from the Surveys ser-
vice, it attaches the SWT to the request in the request’s authorization
header.

When the Surveys service receives the request, a custom authen-
tication module extracts the SWT from the authorization header,
validates the SWT, and then extracts the claims from the SWT. The
Surveys service can then use the claims with its authorization rules to
determine what data, if any, it should return to the user.

The validation of the SWT in the custom authentication module
performs the following steps.

•	 It verifies the hash of the SWT by using the shared secret
key. This enables the Surveys service to verify the data
integrity and the authenticity of the message.

•	 It verifies that the SWT has not expired. The token issuer
sets the expiration time when it creates the SWT.

•	 It checks that the issuer that created the SWT is an issuer
that the service is configured to trust.

•	 It checks that the client application that is making the
request is a client that the service is configured to trust.

Inside the Implementation
Now is a good time to walk through the code that implements the
authentication process in more detail. As you go through this section,
you may want to download the Windows Phone Tailspin Surveys ap-
plication from the Microsoft Download Center.

The CustomServiceHostFactory class in the TailSpin.Services.
Surveys project initializes the Surveys service. The following code ex-
ample shows how this factory class creates the authorization manager.

You should keep the Client
ID and Client Secret secure
on the phone. If someone
discovers them, they could
create an application that
impersonates the Tailspin
mobile client application.

The OAuth protocol uses
a shared key to generate
a hash of the SWT. This
shared secret key must be
known by the issuer and the
Surveys service.

124 chapter four

C#
public class CustomServiceHostFactory : WebServiceHostFactory
{
 private readonly IUnityContainer container;

 public CustomServiceHostFactory(IUnityContainer container)
 {
 this.container = container;
 }

 protected override ServiceHost CreateServiceHost(
 Type serviceType, Uri[] baseAddresses)
 {
 var host = new CustomServiceHost(
 serviceType, baseAddresses, this.container);

 host.Authorization.ServiceAuthorizationManager =
 new SimulatedWebServiceAuthorizationManager();
 host.Authorization.PrincipalPermissionMode =
 PrincipalPermissionMode.Custom;

 return host;
 }
}

The sample Surveys application uses a simulated authorization manager. You must replace this with
a real authorization manager in a production application.

The following code example from the SimulatedWebServiceAuthorizationManager class shows
how to override the CheckAccessCore method in the ServiceAuthorizationManager class to pro-
vide a custom authorization decision.

C#
protected override bool CheckAccessCore(
 OperationContext operationContext)
{
 try
 {
 if (WebOperationContext.Current != null)
 {
 var headers =
 WebOperationContext.Current.IncomingRequest.Headers;
 if (headers != null)
 {
 var authorizationHeader =
 headers[HttpRequestHeader.Authorization];
 if (!string.IsNullOrEmpty(authorizationHeader))
 {

 125Connecting with Services

 if (authorizationHeader.StartsWith("user",
 StringComparison.OrdinalIgnoreCase))
 {
 var userRegex = new Regex(@"(\w+):([^\s]+)",
 RegexOptions.Singleline);
 var username = userRegex.Match(authorizationHeader)
 .Groups[1].Value;
 var password = userRegex.Match(authorizationHeader)
 .Groups[2].Value;
 if (ValidateUserAndPassword(username, password))
 {
 var identity = new ClaimsIdentity(new[]
 {
 new Claim(System.IdentityModel.Claims.ClaimTypes.Name,
 username)
 }, "TailSpin");

 var principal =
 ClaimsPrincipal.CreateFromIdentity(identity);
 operationContext.ServiceSecurityContext
 .AuthorizationContext.Properties["Principal"] =
 principal;

 return true;
 }
 }
 }
 }
 }
 }
 catch (Exception)
 {
 if (WebOperationContext.Current != null)
 {
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 HttpStatusCode.Unauthorized;
 }
 return false;
 }
 if (WebOperationContext.Current != null)
 {
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 HttpStatusCode.Unauthorized;
 }
 return false;
}

126 chapter four

In this simulated authorization manager class, the CheckAccess-
Core method extracts the user name and password from the authoriza-
tion header, calls a validation routine, and if the validation routine
succeeds, it attaches a ClaimsPrincipal object to the web service
context.

In the sample application, the validation routine does nothing more
than check that the user name is one of several hard-coded values.

The IHttpWebRequest interface, in the TailSpin.Phone.Adapters
project, defines method signatures and properties that are imple-
mented by the HttpWebRequestAdapter class. This class adapts the
HttpWebRequest class from the API. The purpose of adapting the
HttpWebRequest class with a class that implements IHttpWeb-
Request is to create a loosely coupled class that is testable.

When SurveysServiceClient calls the GetRequest method in the
HttpClient class, it passes in a new instance of HttpWebRequest-
Adapter, which in turn creates an instance of WebRequest.

The following code example shows how the GetRequest method
in the HttpClient class adds the authorization header with the user
name and password credentials to the HTTP request that the mobile
client sends to the various Tailspin web services.

C#
public IHttpWebRequest GetRequest(IHttpWebRequest httpWebRequest,
 string userName, string password)
{
 var authHeader = string.Format(CultureInfo.InvariantCulture,
 "user {0}:{1}", userName, password);
 httpWebRequest.Headers[HttpRequestHeader.Authorization] =
 authHeader;
 return httpWebRequest;
}

Notifying the Mobile Client of New Surveys
Tailspin wants a way to notify users of new surveys from the user’s list
of preferred tenants. Tenants are subscribers to the cloud-based Tail-

In a real implementation,
Tailspin could extract
a token from the
authorization header
and use a validation
routine that verifies the
token.

The HttpWebRequest
class provides an
HTTP-specific
implementation of
the WebRequest
class.

There are two types of notifications that the phone can receive when the application isn’t running. The first is a
toast notification that the phone displays in an overlay on the user’s current screen. The user can click the message
to launch the application. The second type of notification is a tile notification that changes the appearance of the
front and back of the application’s tile in the Quick Launch area of the phone’s Start experience. If you change the
appearance of a tile by sending a tile notification, and if you want to change the tile back to its original state, you’ll
have to send another message.
You can also use raw notifications to send data directly to the application, but this type of notification requires the
application to be running in the foreground. If the application is not running, MPNS discards the notification and
notifies the sender.

 127Connecting with Services

spin Surveys application who publish surveys. Users will then be able
to synchronize the mobile client application and start using the new
surveys.

Overview of the Solution
Tailspin chose to use the Microsoft Push Notifications Service
(MPNS) for Windows Phone to deliver information about relevant
new surveys to users with Windows Phone devices. This feature al-
lows the cloud-based Surveys application to notify a user about a
relevant new survey even when the mobile client application isn’t
running. In order to receive push notifications, users must first sub-
scribe to them on the AppSettingsView page by turning on the push
notifications ToggleSwitch before saving their application settings. In
addition, users must then go to the FilterSettingsView page and select
their desired tenants before saving their filter settings.

Figure 3 shows, at a high level, how this notification process
works for the Tailspin Surveys application.

Push notifications for
Windows Phone can send
notifications to users of your
Windows Phone application
even if the application isn’t
running. Toast notifications
are ignored if the application
is running, unless the
ShellToastNotification-
Received event is subscribed
to. In this case the application
can decide how it wants to
respond to toast notifications.

Figure 3
Push notifications for Windows Phone

Figure 3 shows how an application on the Windows Phone device
can register for push notifications from another application—a ser-
vice running in Windows Azure in this case. After the registration
process is complete, the service in Windows Azure can push notifica-
tions to the Windows Phone device. The following describes the
process illustrated in Figure 3:

1. The registration process starts when the client application
establishes a channel by sending a message to the MPNS.

Windows
Phone
Device

Mobile Client
Application

Microsoft
Push
Notification
Service

Registration
Web Service

Surveys Application Hosed in
Windows Azure

Send Notification

1. Create
Channel

2. Unique
Channel URI

4. Register
Notification Types

3. Register
for Notifications

5. Push Notifications
to Device

128 chapter four

2. The MPNS returns a URI that is unique to the instance of the
client application on a particular Windows Phone device.

3. Establishing the channel simply enables the phone to receive
messages. The client application must also register with the
service that will send the notification messages by sending its
unique Uniform Resource Identifier (URI) to the service. In
the Surveys application, there is a Registration web service
hosted in Windows Azure that the mobile client application
can use to register its URI for notifications of new surveys.

4. Provided that notification registration has succeeded, the
mobile client application can also specify which types of
notifications it will receive; this part of the registration
process sets up a binding that enables the phone to associate
a notification with the application and enables the user to
launch the mobile client application in response to receiving a
message. The Windows Phone Application Certification
Requirements specify that you must provide the user with
the ability to disable toast and tile notifications. You must
run the application at least once to execute the code that
establishes the channel before your phone can receive
notifications.

5. Notifications are pushed to the Windows Phone device.
The service can use the unique URI to send messages to the client

application. The Surveys service sends a message to a mobile client by
sending a message to the endpoint specified by the URI that the client
sent when it registered. The MPNS hosts this endpoint and forwards
messages from the service on to the correct device.

For more information about the certification requirements that
relate to push notifications, see Section 6.2, “Push Notifications Ap-
plication,” of “Additional Requirements for Specific Application Types” on
the MSDN® developer program website.

The sample application uses the free, unauthenticated MPNS
that limits you to sending 500 notification requests per channel
per day. If you use the free version of MPNS, it also means that
your application is vulnerable to spoofing and denial of service
attacks if someone impersonates the worker role that is sending
notifications.

The authenticated MPNS has no restrictions on the number of
notification messages you can send, and it requires the communi-
cation between your server component and MPNS to use Secure
Sockets Layer (SSL) for sending notification messages.

Remember that
notifications are sent to the
phone, not the application.
This is because there is
no guarantee that the
application will be running
when the Surveys service
sends a message.

 129Connecting with Services

For more information about the Microsoft Push Notification
Service, see “Push Notifications Overview for Windows Phone”
on MSDN.

Inside the Implementation
Now is a good time to take a more detailed look at the code that
implements push notifications. As you go through this section, you
may want to download the Windows Phone Tailspin Surveys application
from the Microsoft Download Center.

Registering for Notifications
Before a phone can receive notifications from the Windows Azure
service of new surveys, it must obtain its unique URI from the MPNS.
This registration process takes place when the user taps the Save but-
ton on the AppSettingsView page.

The following code example shows the IRegistrationService-
Client interface in the TailSpin.PhoneClient project that defines the
registration operations that the mobile client can perform.

C#
public interface IRegistrationServiceClient
{
 IObservable<TaskSummaryResult> UpdateReceiveNotifications(
 bool receiveNotifications);
 IObservable<Unit> UpdateTenants(
 IEnumerable<TenantItem> tenants);
 IObservable<SurveyFiltersInformation>
 GetSurveysFilterInformation();
 bool CredentialsAreInvalid();
 void CloseChannel();
 bool IsProcessing { get; }
 event EventHandler IsProcessingChanged;
}

For details of the UpdateTenants and GetSurveysFilterInforma-
tion methods, see the section, “Filtering Data,” later in this chapter.

The RegistrationServiceClient class implements the Update-
ReceiveNotifications method to handle the registration process for
the mobile client. The following code example shows how the Update-
ReceiveNotifications method handles the registration and unregistra-
tion processes in the mobile client application:

•	 If the user is enabling notifications from MPNS, the method
creates an HttpNotificationChannel object and binds the
channel to the toast and tile notifications, and registers the
unique URI with the Tailspin Surveys service.

The HttpNotificationChannel
object stores the unique URI
allocated by the MPNS.

130 chapter four

•	 If the user is disabling notifications from MPNS, the method unregisters from the Tailspin
Surveys service and closes the channel.

C#
private const string ChannelName = "tailspindemo.cloudapp.net";
private const string ServiceName = "TailSpinRegistrationService";
...
public IObservable<TaskSummaryResult> UpdateReceiveNotifications(
 bool receiveNotifications)
{
 if (receiveNotifications)
 {
 httpChannel = new HttpNotificationChannel(ChannelName, ServiceName);
 ...
 // Bind the channel to the toast and tile nofiticaions and register
 // the URI with the Tailspin Surveys service.
 ...
 }
 else
 {
 httpChannel = HttpNotificationChannel.Find(ChannelName);

 if (httpChannel != null && httpChannel.ChannelUri != null)
 {
 return BindChannelAndUpdateDeviceUriInService(
 receiveNotifications, httpChannel.ChannelUri)
 .Select(taskSummary =>
 {
 IsProcessing = false;
 return TaskSummaryResult.Success;
 });
 }
 else
 {
 IsProcessing = false;
 return Observable.Return(TaskSummaryResult.Success);
 }
 }
}

 131Connecting with Services

When the user is enabling notifications, the code in the following example from the Update-
ReceiveNotifications method creates the channel and registers the URI with the Tailspin Surveys
service, and then binds the channel to the toast and tile notifications. It does this by creating the
HttpChannel object and then converting the ChannelUriUpdated and ErrorOccurred events of the
HttpChannel object into observable sequences using the Observable.FromEvent method, before it
opens the channel. Once the observable sequence for the ChannelUriUpdated event has a value, the
BindChannelAndUpdateDeviceUriInService method is called. The method also uses a timeout on
the ChannelUriUpdated observable sequence, which throws a TimeoutException if the sequence
doesn’t get a value in 60 seconds. Finally, it returns the observable TaskSummaryResult object from
whichever of the two observable sequences gets a value first.

C#
var channelUriUpdated =
 from evt in httpChannel.ObserveChannelUriUpdatedEvent()
 from result in BindChannelAndUpdateDeviceUriInService(receiveNotifications,
 evt.EventArgs.ChannelUri)
 select result;

var channelUriUpdateFail =
 from o in httpChannel.ObserveErrorOccurredEvent()
 select TaskSummaryResult.UnknownError;

httpChannel.Open();

// If the notification service does not respond in time, it is assumed that the
// server is unreachable. The first event that happens is returned.

return channelUriUpdated.Timeout(
 TimeSpan.FromSeconds(60)).Amb(channelUriUpdateFail).Take(1)
 .Select(tsr =>
 {
 IsProcessing = false;
 return tsr;
 })
 .Catch<TaskSummaryResult, TimeoutException>(
 (e) =>
 {
 IsProcessing = false;
 return Observable.Return(TaskSummaryResult.UnreachableServer);
 });

The Take(TSource) method returns a specified number of contiguous values from the start of an
observable sequence.

132 chapter four

The following code example shows how the BindChannelAndUpdateDeviceUriInService
method in the RegistrationServiceClient class registers the clients unique URI with the Tailspin
Surveys web service by asynchronously invoking a web method and passing it a DeviceDto object that
contains the phone’s unique URI. In addition, this method also binds the channel to the toast and tile
notifications.

C#
private IObservable<TaskSummaryResult>
 BindChannelAndUpdateDeviceUriInService(
 bool receiveNotifications, Uri channelUri)
{
 var device = new DeviceDto
 {
 Uri = channelUri != null ? channelUri.ToString() : string.Empty,
 RecieveNotifications = receiveNotifications
 };

 var uri = new Uri(serviceUri, "Notifications");

 return httpClient
 .PostJson(new HttpWebRequestAdapter(uri), settingsStore.UserName,
 settingsStore.Password, device)
 .Select(u =>
 {
 BindChannelAndNotify(receiveNotifications);
 return TaskSummaryResult.Success;
 });
}

This method uses an instance of the HttpClient class to post the data transfer object to the web
service. Tailspin developed the class to simplify the sending of asynchronous HTTP requests from the
mobile client application.

The following code example shows how the BindChannelAndNotify method in the Registration-
ServiceClient class configures the phone to respond to toast and tile notifications.

C#
private readonly Uri serviceUri;
private readonly IHttpClient httpClient;
...

private void BindChannelAndNotify(bool receiveNotifications)
{
 if (httpChannel != null)
 {
 if (receiveNotifications)
 {
 if (!httpChannel.IsShellToastBound)

 133Connecting with Services

 httpChannel.BindToShellToast();

 if (!httpChannel.IsShellTileBound)
 httpChannel.BindToShellTile();
 }
 else
 {
 if (httpChannel.IsShellToastBound)
 httpChannel.UnbindToShellToast();

 if (httpChannel.IsShellTileBound)
 httpChannel.UnbindToShellTile();
 }
 }
}

The following code example shows the PostJson method from the HttpClient class that uses
the Observable.FromAsyncPattern method from the Reactive Extensions (Rx) framework to call the
web method asynchronously. This code example shows four steps:

1. It first creates the IHttpWebRequest object and uses the FromAsyncPattern method to
create an asynchronous function that returns an observable Stream object from the IHttp-
WebRequest object.

2. It uses the WriteContentToStream method to attach the payload to the request stream.
3. It then calls the BeginGetResponse and EndGetResponse methods on the request object

and returns an IObservable<WebResponse>.
4. The method returns an IObservable<Unit> instance, which is equivalent to a null in Rx,

when it has a complete HTTP response message.

C#
public IObservable<Unit> PostJson<T>(IHttpWebRequest httpWebRequest,
 string userName, string password, T obj)
{
 var request = GetRequest(httpWebRequest, userName, password);
 request.Method = "POST";
 request.ContentType = "application/json";

 return from requestStream in Observable
 .FromAsyncPattern<Stream>(request.BeginGetRequestStream,
 request.EndGetRequestStream)()
 from response in WriteContentToStream(requestStream, request, obj)
 select new Unit();
}

private IObservable<WebResponse> WriteContentToStream<T>(Stream requestStream,
 IHttpWebRequest request, T obj)
{

134 chapter four

 using (requestStream)
 {
 var serializer = new DataContractJsonSerializer(typeof(T));
 serializer.WriteObject(requestStream, obj);
 }

 return Observable.FromAsyncPattern<WebResponse>(
 request.BeginGetResponse, request.EndGetResponse)();
}

Figure 4
The chain of observables initiated by the AppSettingsViewModel Submit method.

The Submit method calls UpdateReceiveNotifications on the IRegistrationServiceClient in-
stance, observes the result on the UI thread, and subscribes to the result. The call to UpdateReceive-
Notifications results in one of four outcomes:

•	 TaskSummaryResult.Success is returned. In this case, the settings store is updated and if
the intention was to turn off push notifications, then both the IRegistrationServiceClient
instance and the subscription are disposed of.

•	 TaskSummaryResult.UnreachableServer is returned. This means that the update has timed
out.

•	 TaskSummaryResult.UnknownError is returned. In this case the ChannelUriUpdateFailed
event is raised by the HttpNotificationChannel instance.

•	 An exception is thrown. This may be a WebException related to the HTTP post.
These outcomes are handled by the delegates passed into the call to the Subscribe method. This

is the only call to the Subscribe method that is required to start the chain of observables. The
CloseChannel method in the RegistrationServiceClient class closes and disposes of the HttpChannel
object, and is called from the CleanUp method in the AppSettingsViewModel class. For more informa-
tion see, “Handling Asynchronous Interactions” in Chapter 3, “Using Services on the Phone.”

Figure 4 outlines the chain of observables that are initiated by the AppSettingsViewModel-
Submit method.

AppSettings.Submit

Subscribe IObservable
Observe

UpdateReceive
Notifications

channelUriUpdate
Fail

channelUriUpdated

Timeout

BindChannelAnd
UpdateDeviceUri

InService

HTTPClient
PostJson

 135Connecting with Services

So far, this section has described Tailspin’s implementation of the client portion of the registration
process. The next part of this section describes how the Surveys service stores the unique URI that
the client obtained from the MPNS in Windows Azure storage whenever a Windows Phone device
registers for notifications of new surveys.

The following code example shows the implementation of the registration web service that runs
in Windows Azure. You can find this class is in the Tailspin.Services.Surveys project.

C#
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
[ServiceBehavior(InstanceContextMode =
 InstanceContextMode.PerCall)]
public class RegistrationService : IRegistrationService
{
 ...
 private readonly IUserDeviceStore userDeviceStore;
 ...
 public void Notifications(DeviceDto device)
 {
 var username = Thread.CurrentPrincipal.Identity.Name;

 bool isWellFormedUriString = Uri.IsWellFormedUriString(
 device.Uri, UriKind.Absolute);
 if (isWellFormedUriString)
 {
 if (device.RecieveNotifications)
 {
 this.userDeviceStore.SetUserDevice(username, new Uri(device.Uri));
 }
 else
 {
 this.userDeviceStore.RemoveUserDevice(new Uri(device.Uri));
 }
 }
 }
}

The Notifications method receives a DeviceDto parameter object that includes the unique URI
allocated to the phone by the MPNS and a Boolean flag to specify whether the user is subscribing or
unsubscribing to notifications. The service saves the details in the DeviceDto object in the device
store in Windows Azure storage.

In the sample application, the service does not protect the data as it reads and writes to Windows
Azure storage. When you deploy your application to Windows Azure, you should secure your table,
binary large object (blob), and queue endpoints using SSL.

136 chapter four

Although phones can explicitly unsubscribe from notifications,
the application also removes devices from the device store if it de-
tects that they are no longer registered with the MPNS when it sends
a notification.

Sending Notifications
When a survey creator saves a new survey, the Surveys service in
Windows Azure retrieves all the URIs for the subscribed Windows
Phone devices and then sends the notifications to all the devices that
subscribe to notifications for surveys created by that particular survey
creator.

The following code example from the NewSurveyNotification-
Command class in the TailSpin.Workers.Notifications project shows
how the Windows Azure worker role retrieves the list of subscribed
phones and sends the notifications. This method uses the filtering
service to retrieve the list of devices that should receive notifications
about a particular survey. For more information, see the section, “Fil-
tering Data,” later in this chapter.

C#
public void Run(NewSurveyMessage message)
{
 var survey = this.surveyStore.GetSurveyByTenantAndSlugName(
 message.Tenant, message.SlugName, false);

 if (survey != null)
 {
 var deviceUris =
 from user in this.filteringService.GetUsersForSurvey(survey)
 from deviceUri in this.userDeviceStore.GetDevices(user)
 select deviceUri;

 foreach (var deviceUri in deviceUris)
 {
 this.pushNotification.PushToastNotification(
 deviceUri.ToString(),
 "New Survey", "tap 'sync' to get it",
 uri => this.userDeviceStore.RemoveUserDevice(
 new Uri(uri)));
 }
 }
}

The Tailspin Surveys service
sends toast notifications of
new surveys to subscribed
Windows Phone devices.

 137Connecting with Services

The Run method also passes a reference to a callback method that
removes from the device store phones that are no longer registered
with the MPNS.

For more information about how the Run method is triggered,
and about retry policies if the Run method throws an exception,
see the section “The Worker Role ‘Plumbing’ Code” in Chapter 4,
“Building a Scalable, Multi-Tenant Application for Windows
Azure,” of the book, Developing Applications for the Cloud on
the Microsoft Windows Azure™ Platform 2nd Edition. This is
available on MSDN.

The following code example shows the PushToastNotification
method in the PushNotification class, from the TailSpin.Web.Survey.
Shared project, which is invoked by the worker role command to send
the notification. This method creates the toast notification message
to send to the MPNS before it calls the SendMessage method.

C#
public void PushToastNotification(string channelUri, string text1,
 string text2, DeviceNotFoundInMpns callback)
{
 byte[] payload = ToastNotificationPayloadBuilder.Create(
 text1, text2);
 string messageId = Guid.NewGuid().ToString();
 this.SendMessage(NotificationType.Toast, channelUri, messageId,
 payload, callback);
}

The SendMessage method sends messages to the MPNS for for-
warding on to the subscribed devices. The following code example
shows how the SendMessage method sends the message to the
MPNS; the next code example shows how the SendMessage method
receives a response from the MPNS.

C#
protected void OnNotified(NotificationType notificationType,
 HttpWebResponse response)
{
 var args = new NotificationArgs(notificationType, response);
 ...
}

private void SendMessage(NotificationType notificationType,
 string channelUri, string messageId, byte[] payload,
 DeviceNotFoundInMpns callback)

The SendMessage method
acquires the stream and
writes to it asynchronously
because the service may
be sending messages
to hundreds or even
thousands of devices, and
for every device, it needs to
open and write to a stream.

138 chapter four

{
 try
 {
 WebRequest request = WebRequestFactory.CreatePhoneRequest(
 channelUri, payload.Length, notificationType, messageId);
 request.BeginGetRequestStream(
 ar =>
 {
 // Once async call returns get the Stream object
 Stream requestStream = request.EndGetRequestStream(ar);

 // and start to write the payload to the stream
 // asynchronously.
 requestStream.BeginWrite(
 payload,
 0,
 payload.Length,
 iar =>
 {
 // When the writing is done, close the stream
 requestStream.EndWrite(iar);
 requestStream.Close();

 // and switch to receiving the response from MPNS

 ...
 },
 null);
 },
 null);
 }
 catch (WebException ex)
 {
 if (ex.Status == WebExceptionStatus.ProtocolError)
 {
 this.OnNotified(notificationType, (HttpWebResponse)ex.Response);
 }
 Trace.TraceError(ex.TraceInformation());
 }
}

 139Connecting with Services

After the SendMessage method sends the message to the MPNS, it waits for a response. It must
receive the message asynchronously because the MPNS does not return a response until it, in turn,
receives a response from the Windows Phone device. The SendMessage method notifies its caller of
the response through the OnNotified method call.

C#
...
// Switch to receiving the response from MPNS.
request.BeginGetResponse(
 iarr =>
 {
 try
 {
 using (WebResponse response = request.EndGetResponse(iarr))
 {
 // Notify the caller with the MPNS results.
 this.OnNotified(notificationType, (HttpWebResponse)response);
 }
 }
 catch (WebException ex)
 {
 if (ex.Status == WebExceptionStatus.ProtocolError)
 {
 this.OnNotified(notificationType, (HttpWebResponse)ex.Response);
 }
 if (((HttpWebResponse)ex.Response).StatusCode == HttpStatusCode.NotFound)
 {
 callback(channelUri);
 }
 Trace.TraceError(ex.TraceInformation());
 }
 },
 null);
...

If the SendMessage method receives a “404 Not Found” response code from the MPNS, it re-
moves the stored subscription details from the store because this response indicates that the device
is no longer registered with the MPNS.

140 chapter four

The following table summarizes the information available from the MPNS in the response.

Item Description

Message ID This is a unique identifier for the response message.

Notification Status This is the status of the notification message. Possible values are Received, Dropped, or
QueueFull. You could use this value to determine whether you need to resend the message
to this device.

Device Connection
Status

This is the connection status of the device. Possible values are Connected, InActive,
Disconnected, and TempDisconnected. If it is important that a device receive the message,
you can use this value to determine whether you need to resend the message later.

Subscription Status This is the device’s subscription status. Possible values are Active and Expired. If a device’s
subscription has expired, you can remove its URI from your list of subscribed devices.

For more information about sending push notifications, see “How to: Send a Push Notification for
Windows Phone” on MSDN.

Notification Payloads
The elements of a toast notification are:

•	 A title string that displays after the application icon.
•	 A content string that displays after the title.
•	 A parameter value that is not displayed but is passed to the application if the user taps on

the toast notification; for example, the page the application should launch to, or name-value
pairs to pass to the application.

For information about the elements of a tile notification you should read the section, “Using Live
Tiles on the Phone,” in Chapter 3, “Using Services on the Phone.”

You must make sure that the strings you send on toast notifications fit in the available space.
The following code example from the ToastNotificationPayloadBuilder class in the TailSpin.

Workers.Notifications project shows how the Surveys service constructs a toast notification message.

C#
public static byte[] Create(string text1, string text2 = null)
{
 using (var stream = new MemoryStream())
 {
 var settings = new XmlWriterSettings
 {
 Indent = true,
 Encoding = Encoding.UTF8
 };
 using (XmlWriter writer = XmlWriter.Create(stream, settings))
 {
 if (writer != null)
 {
 writer.WriteStartDocument();
 writer.WriteStartElement("wp", "Notification",
 "WPNotification");

 141Connecting with Services

 writer.WriteStartElement("wp", "Toast", "WPNotification");
 writer.WriteStartElement("wp", "Text1", "WPNotification");
 writer.WriteValue(text1);
 writer.WriteEndElement();
 writer.WriteStartElement("wp", "Text2", "WPNotification");
 writer.WriteValue(text2);
 writer.WriteEndElement();
 writer.WriteEndElement();
 writer.WriteEndDocument();
 writer.Close();
 }

 byte[] payload = stream.ToArray();
 return payload;
 }
 }
}

Accessing Data in the Cloud
The Surveys application stores its data in the cloud using a combination of Windows Azure tables and
blobs. The mobile client application needs to access this data. For example, it must be able to retrieve
survey definitions before it can display the questions to the phone user, and it must be able to save
completed survey responses back to the cloud where they will be available for analysis by the survey
creator.

Goals and Requirements
The mobile client application must be able to reliably download survey definitions and reliably upload
survey responses. Making sure that surveys download reliably is important because survey creators
want to be sure that surveys are delivered to all potential surveyors in order to maximize the number
of responses. Making sure that surveys upload reliably is important because survey creators want to
receive the maximum number of completed surveys, with no duplication of results.

The developers at Tailspin are aware that some surveyors may have limited bandwidth available,
so they wanted to control the amount of bandwidth used to transfer data between the phone and
the service. In addition to this, the developers at Tailspin want to make sure that the application
performs well when it transfers data to and from the cloud.

The developers also wanted a solution that was as simple as possible to implement, and that they
could easily customize in the future if, for example, authentication requirements were to change.

Finally, again with a view to the future, the developers wanted a solution that could potentially
work with platforms other than Windows Phone.

142 chapter four

Overview of the Solution
Tailspin considered three separate aspects of the solution: how to
implement the server, how to implement the client, and the format of
the data that the application moves between the phone and the
cloud.

Exposing the Data in the Cloud
The developers at Tailspin decided to use the Windows Communica-
tion Foundation (WCF) Representational State Transfer (REST) pro-
gramming model to expose the data in the Tailspin Surveys service.

Data Formats
Because Tailspin is using a custom WCF service, they must use custom
data transfer objects to exchange data between the mobile client ap-
plication and the cloud-based service. Tailspin chose to use a JavaScript
Object Notation (JSON) format for moving the data over the wire
because it produces a compact payload that reduces bandwidth re-
quirements, is relatively easy to use, and will be usable on platforms
other than the Windows Phone platform.

If, in the future, Tailspin moves to WCF Data Services, it will no
longer require the custom data transfer objects because WCF
Data Services use the OData protocol to move data over the wire.

Tailspin also considered compressing the data before transferring
it over the network to reduce bandwidth utilization, but the develop-
ers at Tailspin decided that the additional CPU and battery usage on
the phone that this would require outweighed the benefits in this
particular case. You should evaluate this tradeoff between the cost of
bandwidth and battery consumption in your own application before
you decide whether to compress data you need to move over the
network.

Consuming the Data
The developers at Tailspin implemented a set of custom classes in the
mobile client application to handle the data transfer with the Tailspin
web service. The classes on the mobile client interact with the WCF
REST service and parse the data received from the service. Tailspin’s
analysis of the data transfer requirements for the Windows Phone
application identified only two types of interaction with the service:
a “Get Surveys” operation and a “Send Survey Result” operation, so
the implementation of a custom client should be quite simple. Fur-
thermore, the “Send Survey Result” operation always appends the
result to the store on the server so there are no concurrency issues,
and survey creators cannot modify a survey design after they publish
it so there are no versioning issues.

On the phone, additional
CPU usage affects both
the responsiveness of the
device and its battery life.

Tailspin is using the WCF
REST programming model to
exchange data between the
mobile client and the cloud-
based service.

In the future, Tailspin
would like to use WCF
Data Services because
of its support for the
OData standard. For more
information about OData,
see the Open Data Protocol
website.

 143Connecting with Services

In the future, Tailspin may decide to use WCF Data Services and
the OData protocol. OData client libraries, including a version
for Windows Phone, are available for download on the Open
Data Protocol website.

Using the OData Client Library would minimize the amount of
code that the developers would have to write because the library
and the code generated by using the DataSvcUtil utility fully en-
capsulate the calls to the WCF Data Service endpoint. Further-
more, using the client library offers advanced features such as
batching, client-side state management, and conflict resolution.

For a walkthrough that shows how to use the OData Client
Library on the Windows Phone platform, see the post, “Walk-
through: Consuming OData with MVVM for Windows Phone,”
on MSDN.

Tailspin also evaluated the Microsoft Sync Framework to handle
the synchronization of data between the phone and Windows Azure,
but it was decided that the simplicity of the synchronization required
by the Tailspin mobile client application did not warrant this.

Using SSL
Self-signed certificates are not supported on the Windows Phone
device, so to implement SSL, it is necessary to use a server certificate
from a trusted third-party company, such as VeriSign. Therefore, the
sample application does not secure the WCF REST service with SSL,
so a malicious client can impersonate the phone client and send mali-
cious data.

Inside the Implementation
Now is a good time to take a more detailed look at the code that en-
ables the mobile client application to access data in the cloud. As you
go through this section, you may want to download the Windows Phone
Tailspin Surveys application from the Microsoft Download Center.

Creating a WCF REST Service in the Cloud
The TailSpin.Services.Surveys project includes a standard WCF
REST Service named SurveysService hosted in Windows Azure that
exposes the survey data to the Windows Phone client application.
The Windows Azure web role defined in the TailSpin.Services.
Surveys.Host.Azure project populates a routing table that includes
a route to the Surveys service in its Global.asax.cs file. The follow-
ing code example shows how the RegisterRoutes method creates
the RouteTable object.

You should protect any
sensitive data that you
need to transfer over the
network between the
Windows Phone client and
the Windows Azure-hosted
services by using SSL.

144 chapter four

C#
public class Global : HttpApplication
{
 protected void Application_Start(object sender, EventArgs e)
 {
 ...
 RegisterRoutes();
 }

 private static void RegisterRoutes()
 {
 var customServiceHostFactory = new
 CustomServiceHostFactory(ContainerLocator.Container);
 RouteTable.Routes.Add(new ServiceRoute("Registration",
 customServiceHostFactory, typeof(RegistrationService)));
 RouteTable.Routes.Add(new ServiceRoute("Survey",
 customServiceHostFactory, typeof(SurveysService)));
 }
}

This SurveysService class implements the WCF REST service
endpoints. The following code example shows the GetSurveys
method in the SurveysService class that exposes the surveys data
stored in Windows Azure storage.

C#
public SurveyDto[] GetSurveys(string lastSyncUtcDate)
{
 DateTime fromDate;
 if (!string.IsNullOrEmpty(lastSyncUtcDate))
 {
 if (DateTime.TryParse(lastSyncUtcDate, out fromDate))
 {
 fromDate = DateTime.SpecifyKind(fromDate,
 DateTimeKind.Utc);
 }
 else
 {
 throw new FormatException("lastSyncUtcDate is in an
 incorrect format. The format should be:
 yyyy-MM-ddTHH:mm:ss");
 }
 }
 else
 {

You should secure all your
Windows Azure BLOB,
table, and queue endpoints
using SSL.

 145Connecting with Services

 fromDate = new DateTime(1900, 1, 1, 0, 0, 0, DateTimeKind.Utc);
 }

 var username = Thread.CurrentPrincipal.Identity.Name;

 return this.filteringService
 .GetSurveysForUser(username, fromDate)
 .Select(s => new SurveyDto
 {
 SlugName = s.SlugName,
 Title = s.Title,
 Tenant = s.Tenant,
 Length = 5 * s.Questions.Count,
 IconUrl = this.GetIconUrlForTenant(s.Tenant),
 CreatedOn = s.CreatedOn,
 Questions = s.Questions.Select(q => new QuestionDto
 {
 PossibleAnswers = q.PossibleAnswers,
 Text = q.Text,
 Type = Enum.GetName(typeof(QuestionType), q.Type)
 }).ToList()
 }).ToArray();
}

This example shows how the Surveys service returns survey definitions to the mobile client in an
array of SurveyDto objects that represent surveys added to the service after a specified date. It also
demonstrates how you can apply a filter to the request. In the current version of the application, the
filter returns a list of surveys from the phone user’s preferred list of tenants. For more information
about how Tailspin implemented the filtering behavior, see the section, “Filtering Data,” later in this
chapter.

To enable the mobile client to upload survey answers, the SurveysService class provides two
methods: one for uploading individual images and sound clips, and one for uploading complete survey
answers. The following code example shows how the AddMediaAnswer method saves an image or a
sound clip to Windows Azure blob storage and returns a URI that points to the blob.

C#
public string AddMediaAnswer(Stream media, string type)
{
 var questionType = (QuestionType)Enum.Parse(typeof(QuestionType), type);
 return this.mediaAnswerStore.SaveMediaAnswer(media, questionType);
}

146 chapter four

The following code example shows the AddSurveyAnswers method that receives an array of
Survey-AnswerDto objects that it unpacks and saves in the survey answer store in Windows Azure
storage.

C#
public void AddSurveyAnswers(SurveyAnswerDto[] surveyAnswers)
{
 foreach (var surveyAnswerDto in surveyAnswers)
 {
 this.surveyAnswerStore.SaveSurveyAnswer(new SurveyAnswer
 {
 Title = surveyAnswerDto.Title,
 SlugName = surveyAnswerDto.SlugName,
 Tenant = surveyAnswerDto.Tenant,
 StartLocation = surveyAnswerDto.StartLocation,
 CompleteLocation = surveyAnswerDto.CompleteLocation,
 QuestionAnswers = surveyAnswerDto.QuestionAnswers
 .Select(qa => new QuestionAnswer
 {
 QuestionText = qa.QuestionText,
 PossibleAnswers = qa.PossibleAnswers,
 QuestionType = (QuestionType)Enum.Parse(
 typeof(QuestionType), qa.QuestionType),
 Answer = qa.Answer
 }).ToList()
 });
 }
}

Consuming the Data in the Windows Phone Client Application
The mobile client application uses the methods exposed by the Surveys service to send and receive
survey data.

The following code example shows the ISurveysServiceClient interface that defines the set of
asynchronous WCF REST calls that the mobile client application can make.

C#
public interface ISurveysServiceClient
{
 IObservable<IEnumerable<SurveyTemplate>> GetNewSurveys(string lastSyncDate);
 IObservable<Unit> SaveSurveyAnswers(IEnumerable<SurveyAnswer> surveyAnswers);
}

The SurveysServiceClient class implements this interface, and the following code example shows
the GetNewSurveys method that sends the request to the service and returns the observable list of
surveys to the application. This method makes the asynchronous web request by using the GetJson
method from the HttpClient class, converts the returned data transfer objects to SurveyTemplate
objects, and then returns an observable sequence of SurveyTemplate objects.

 147Connecting with Services

C#
public IObservable<IEnumerable<SurveyTemplate>>
 GetNewSurveys(string lastSyncDate)
{
 var surveysPath = string.Format(CultureInfo.InvariantCulture,
 "Surveys?lastSyncUtcDate={0}", lastSyncDate);
 var uri = new Uri(this.serviceUri, surveysPath);

 return
 httpClient
 .GetJson<IEnumerable<SurveyDto>>(
 new HttpWebRequestAdapter(uri),
 settingsStore.UserName, settingsStore.Password)
 .Select(ToSurveyTemplate);
}

For more information about the HttpClient class that makes the
asynchronous web request, see the section, “Registering for Noti-
fications,” earlier in this chapter.

To save completed survey answers to the Surveys service, the cli-
ent must first save any image and sound-clip answers. It uploads each
media answer in a separate request, and then it includes the URL that
points to the blob that contains the media when the client uploads
the complete set of answers for a survey. It would be possible to up-
load the survey answers and the media in a single request, but this may
require a large request that exceeds the maximum upload size config-
ured in the service. By uploading all the media items first, the worst
that can happen, if there is a failure, is that there are orphaned media
items in Windows Azure storage.

The following code example shows the first part of the Save-
AndUpdateMediaAnswers method that creates a list of answers that
contain media.

C#
var mediaAnswers =
 from surveyAnswer in surveyAnswersDto
 from answer in surveyAnswer.QuestionAnswers
 where answer.Answer != null &&
 (answer.QuestionType ==
 Enum.GetName(typeof(QuestionType), QuestionType.Picture) ||
 answer.QuestionType ==
 Enum.GetName(typeof(QuestionType), QuestionType.Voice))
 select answer;

Tailspin decided to
support clients that upload
individual media items
instead of using multi-part
messages in order to
support the widest set of
possible client platforms.

148 chapter four

The method then iterates over this list and asynchronously creates HTTP requests to post each
media item to the Tailspin Surveys service.

C#
foreach (var answer in mediaAnswers)
{
 var mediaAnswerPath = string.Format(CultureInfo.InvariantCulture,
 "MediaAnswer?type={0}", answer.QuestionType);
 var mediaAnswerUri = new Uri(this.serviceUri, mediaAnswerPath);
 byte[] mediaFile = GetFile(answer.Answer);

 var request = httpClient.GetRequest(
 new HttpWebRequestAdapter(mediaAnswerUri),
 settingsStore.UserName, settingsStore.Password);
 request.Method = "POST";
 request.Accept = "application/json";
 ...
}

The method then asynchronously sends each of these requests and retrieves the response to each
request in order to extract the URL that points to the blob where the service saved the media item.
It must then assign the returned URLs to the Answer property of the correct QuestionAnswerDto
data transfer object. The following code example shows how the SaveAndUpdateMediaAnswers
method sends the media answers to the Tailspin Surveys service asynchronously. The code example
shows how this operation is broken down into the following steps:

1. The method first makes an asynchronous call to access the HTTP request stream as an
observable object.

2. The method writes the media item to the request stream and then makes an asynchronous
call to access the HTTP response stream.

3. It reads the URL of the saved media item from the response stream and sets the Answer
property of the QuestionAnswerDto object.

4. The ForkJoin method makes sure that the media answers are uploaded in parallel, and after
all the media answers are uploaded, the method returns an IObservable<Unit> object.

C#
var mediaAnswerObservables = new List<IObservable<Unit>>();
foreach (var answer in mediaAnswers)
{
 ...

 QuestionAnswerDto answerCopy = answer;
 var saveFileAndUpdateAnswerObservable = Observable
 .FromAsyncPattern<Stream>(request.BeginGetRequestStream,
 request.EndGetRequestStream)()
 .SelectMany(requestStream =>
 {

 149Connecting with Services

 using (requestStream)
 {
 requestStream.Write(mediaFile, 0, mediaFile.Length);
 requestStream.Close();
 }
 return Observable.FromAsyncPattern<WebResponse>(
 request.BeginGetResponse, request.EndGetResponse)();
 },
 (requestStream, webResponse) =>
 {
 using (var responseStream = webResponse.GetResponseStream())
 {
 var responseSerializer = new
 DataContractJsonSerializer(typeof(string));
 answerCopy.Answer =
 (string)responseSerializer.ReadObject(responseStream);
 }

 return new Unit();
 });

 mediaAnswerObservables.Add(saveFileAndUpdateAnswerObservable);
}

return mediaAnswerObservables.ForkJoin().Select(u => new Unit());

The following code example shows how the mobile client uploads completed survey answers. It
first creates the data transfer objects, then it uploads any media answers using the SaveAndUpdate-
MediaAnswers method described earlier, and finally, it uploads the SurveyAnswerDto object using
the HttpClient class. The SelectMany method here makes sure that all the media answers are up-
loaded before the SurveyAnswerDto object.

C#
public IObservable<Unit>
 SaveSurveyAnswers(IEnumerable<SurveyAnswer> surveyAnswers)
{
 var surveyAnswersDto = ToSurveyAnswersDto(surveyAnswers);

 var saveAndUpdateMediaAnswersObservable =
 SaveAndUpdateMediaAnswers(surveyAnswersDto);

 var uri = new Uri(this.serviceUri, "SurveyAnswers");
 var saveSurveyAnswerObservable =
 httpClient.PostJson(new HttpWebRequestAdapter(uri),
 settingsStore.UserName, settingsStore.Password,
 surveyAnswersDto);

150 chapter four

 return saveAndUpdateMediaAnswersObservable.SelectMany(
 u => saveSurveyAnswerObservable);
}

Both the GetNewSurveys and SaveSurveyAnswer methods are
called from the SurveysSynchronizationService class that is respon-
sible for coordinating which surveys should be downloaded and which
survey answers should be uploaded. For a description of the synchro-
nization process, see Chapter 3, “Using Services on the Phone.”

Filtering Data
Users of the mobile client application can express preferences for
which surveys they would like to see on their devices. In the applica-
tion, the criteria will be a list of preferred tenants (survey creators
such as Adatum and Fabrikam in the sample). There are two scenarios
in which the Tailspin Surveys service must filter data based on filter
criteria from the client:

•	 The cloud service can send notifications to mobile clients to
tell them when new surveys are available. The notification
service should only send a notification to a user if one of the
user’s preferred tenants created the new survey.

•	 When the mobile client synchronizes its data with the
Tailspin Surveys service, the phone should only receive
surveys created by the user’s preferred tenants.

For more details about the notification process, see the section,
“Notifying the Mobile Client of New Surveys,” earlier in this
chapter. For more details about the synchronization process, see
the section, “Synchronizing Data between the Client and the
Cloud,” in Chapter 3, “Using Services on the Phone.”

Overview of the Solution
There are three tasks that make up the filtering functionality in the
Tailspin Surveys application: registering the user’s preferences; identi-
fying which devices to notify when a tenant adds a new survey; and
identifying which surveys to include in the synchronization process.

The Surveys service filters lists
of surveys for notifications
and for synchronization.

 151Connecting with Services

Registering User Preferences
The user creates a list of preferred tenants on the FilterSettingsView page in the mobile client applica-
tion. When the user saves the settings, the Tailspin Surveys mobile client application sends the prefer-
ences to the Tailspin Surveys registration service that then stores the list of preferred tenants in
Windows Azure table storage.

Figure 5 outlines the way that the mobile client application saves the user’s settings in the Tailspin
Surveys web service.

Filters
Adatum

Fabrikam

Save

FilterSettingsViewModel
class

SaveCommand delegate

RegistrationServiceClient
class

UpdateTenants method

Invoke the Tenants web method
passing an array of stringsRegistrationService

class

SetFilters web method TenantFilterStore
class wraps
Windows Azure
Storage

Figure 5
Saving user settings in the Tailspin Surveys web service

Filters
Adatum

Fabrikam

Save

FilterSettingsViewModel
class

SaveCommand delegate

RegistrationServiceClient
class

UpdateTenants method

Invoke the Tenants web method
passing an array of stringsRegistrationService

class

SetFilters web method TenantFilterStore
class wraps
Windows Azure
Storage

152 chapter four

The view model uses a service class to send the settings to the
Tailspin Surveys registration web service. All the settings are encapsu-
lated in a data transfer object that the web service code unpacks and
saves in Windows Azure table storage.

The following table shows the structure of the tenant filter table
in Windows Azure table storage that stores the list of preferred ten-
ants for each user.

Column Notes

Tenant name A string holding the tenant name. This column is the table’s
partition key.

User name A string holding the user name. This column is the table’s row key.

The application can use this table to retrieve a list of tenants that
a particular user is interested in or a list of users who are interested in
a particular tenant.

For more information about Windows Azure table storage, in-
cluding partition keys and row keys, see Chapter 5, “Phase 2:
Automating Deployment and Using Windows Azure Storage,”
of the book, Moving Applications to the Cloud 2nd Edition.
It is available on MSDN.

The following table shows the structure of the user device table
in Windows Azure table storage that records which physical devices,
identified by a unique URI allocated by the MPNS, are associated with
each user.

Column Notes

User name A string holding the user name. This column is the table’s
partition key.

Device URI A string holding the device’s unique URI that the MPNS uses
to push notifications to the device. This column is the table’s
row key.

The structure of this table reflects the fact that a user can have
more than one device, each with a unique URI for the MPNS to use.
Tailspin optimized this table to support queries that look for the list
of devices owned by a user.

With the current implementation, it’s possible for a user who
owns multiple Windows Phone devices to enter different lists of
preferred tenants on the different devices. The data model in the
Tailspin Surveys service only supports a single list of preferred
tenants for each user, so the user might see unexpected results
on some of their devices.

If you query this table and
include the tenant name
in the where clause, the
query will run efficiently
because it only needs to
access a single partition.
For example, finding all the
users who are interested in
surveys created by Adatum
is an efficient query.
However, asking for a list
of all the tenants that a
particular user is interested
in is an inefficient query
because it must scan all the
partitions that make up the
table.

 153Connecting with Services

Identifying Which Devices to Notify
Figure 6 outlines the process that the Tailspin Surveys service uses to
identify which devices to notify when a subscriber adds a new survey.

In the current version of the application, obtaining the list of users who are interested in a particular
survey uses just a single criterion: the user’s list of preferred tenants. In the future, the criteria may
become more complex if, for example, users can express preferences for location, survey length,
or some other attribute of the survey. The developers at Tailspin have implemented an extensible
filtering mechanism to accommodate any future additions to the list of supported criteria.

Figure 6
Building a list of devices to notify about a new survey

Identifying which devices to notify when a tenant adds a new
survey requires two queries. The first query gets the list of users who
are interested in that particular survey and this query uses a filtering
service to build this list of users based on user preferences stored in
Windows Azure table storage.

The second query uses the list of users to find a list of devices to
notify, again using data stored in Windows Azure table storage that
maps users to devices.

TenantFilterStore
class wraps
Windows Azure
Storage

UserDeviceStore
class wraps
Windows Azure
Storage

Windows Azure Notifications
worker role

NewSurveyNotificationCommand
class

FilteringService
class

GetUsersForSurvey method

Other Filters

Tenant Filter

GetUsers method

2

1

154 chapter four

Selecting Surveys to Synchronize
Figure 7 outlines the way that the Tailspin application delivers new, relevant surveys to the mobile
client application when it synchronizes with the Tailspin Surveys service. The user initiates the syn-
chronization process from the SurveyListView page, and the view model invokes a method in a service
class to retrieve the list of new surveys. Alternatively, the synchronization process can be automati-
cally initiated by the background agent, which periodically runs if the user has enabled background
tasks in the AppSettingsView page. In the Tailspin Surveys service, the application gets the list of
surveys to return to the client from a filtering service class.

SurveyStore
class wraps
Windows Azure
Storage

TenantFilterStore
class wraps
Windows Azure
Storage

SurveysService
class

GetSurveys web method

FilteringService
class

GetSurveysForUser method

Other Filters

Tenant Filter

GetSurveys method

21

Sync

SurveyListViewModel
class

StartSyncCommand delegate

SurveysSynchronizationService
class

StartSynchronization method

Surveys
Survey 1
Survey 2
Survey 3

Invoke the GetNewSurveys web method
passing last synchronization date

ScheduledAgent
Class

RunPeriodicTask method

SurveysSynchronizationService
class

GetNewSurveys method

Figure 7
Building a list of new surveys for a user

SurveyStore
class wraps
Windows Azure
Storage

TenantFilterStore
class wraps
Windows Azure
Storage

SurveysService
class

GetSurveys web method

FilteringService
class

GetSurveysForUser method

Other Filters

Tenant Filter

GetSurveys method

21

Sync

SurveyListViewModel
class

StartSyncCommand delegate

SurveysSynchronizationService
class

StartSynchronization method

Surveys
Survey 1
Survey 2
Survey 3

Invoke the GetNewSurveys web method
passing last synchronization date

ScheduledAgent
Class

RunPeriodicTask method

SurveysSynchronizationService
class

GetNewSurveys method

 155Connecting with Services

Identifying which surveys to download when a user synchronizes
from the mobile client requires two queries. The first query returns a
list of tenants based on user preferences stored in Windows Azure
table storage. In the current version of the application, these prefer-
ences are lists of tenants in which the user is interested. The second
query, which is inside the filter, uses the list of tenants to return a list
of new surveys from those tenants.

Inside the Implementation
Now let’s take a more detailed tour of the code that implements the
filtering of the list of surveys. As you go through this section, you may
want to download the Windows Phone Tailspin Surveys application
from the Microsoft Download Center.

Storing Filter Data
The Tailspin Surveys service stores filter data in Windows Azure table
storage. It uses one table to store the tenant filter data, and one table
to store the device filter data. The following code example shows how
the TenantFilterStore class saves tenant filter data in the Windows
Azure table storage.

C#
public class TenantFilterStore : ITenantFilterStore
{
 private readonly IAzureTable<TenantFilterRow>
 tenantFilterTable;
 ...
 public void SetTenants(string username,
 IEnumerable<string> tenants)
 {
 var rowsToDelete = (from r in this.tenantFilterTable.Query
 where r.RowKey == username
 select r).ToList();

 this.tenantFilterTable.Delete(rowsToDelete);

 var rowsToAdd = tenants.Select(t => new TenantFilterRow
 {
 PartitionKey = t,
 RowKey = username
 });
 this.tenantFilterTable.Add(rowsToAdd);
 }
}

The application removes
any existing data with the
same key before adding the
new rows.

156 chapter four

The following code example shows how the UserDeviceStore class saves device data.

C#
public class UserDeviceStore : IUserDeviceStore
{
 private readonly IAzureTable<UserDeviceRow> userDeviceTable;
 ...
 public void SetUserDevice(string username, Uri deviceUri)
 {
 this.RemoveUserDevice(deviceUri);

 var encodedUri = Convert.ToBase64String(
 Encoding.UTF8.GetBytes(deviceUri.ToString()));
 this.userDeviceTable.Add(new UserDeviceRow
 {
 PartitionKey = username,
 RowKey = encodedUri
 });
 }

 public void RemoveUserDevice(Uri deviceUri)
 {
 var encodedUri = Convert.ToBase64String(
 Encoding.UTF8.GetBytes(deviceUri.ToString()));
 var row = (from r in this.userDeviceTable.Query
 where r.RowKey == encodedUri
 select r).SingleOrDefault();

 if (row != null)
 {
 this.userDeviceTable.Delete(row);
 }
 }
}

The following code example shows how the SetFilters web method in the RegistrationService
class stores the list of preferred tenants sent from the mobile client.

C#
public void SetFilters(SurveyFiltersDto surveyFiltersDto)
{
 var username = Thread.CurrentPrincipal.Identity.Name;

 this.tenantFilterStore.SetTenants(username,
 surveyFiltersDto.Tenants.Select(t => t.Key));
}

 157Connecting with Services

There is also a GetFilters web method to return the current list of preferred tenants to the client.
The phone does not save the filter information locally; instead, it retrieves it from the web service
using the GetFilters method when it needs it.

Building a List of Devices to Receive Notifications
Whenever a tenant creates a new survey, the Tailspin Surveys service must send notifications to all
the devices that are interested in that survey. The criteria that the service uses to select the devices
may change in future versions of the application, so the developers at Tailspin implemented an exten-
sible filtering method to build the list.

The following code example from the Run method in the NewSurveyNotificationCommand
class retrieves a list of device URIs to which it will send notifications. The NewSurveyNotification-
Command class implements a command that a Windows Azure worker role executes in response to
receiving a message on a Windows Azure queue.

C#
var deviceUris =
 from user in this.filteringService.GetUsersForSurvey(survey)
 from deviceUri in this.userDeviceStore.GetDevices(user)
 select deviceUri;

This code uses the FilteringService class to get a list of users who are interested in the new sur-
vey, and then it uses the GetDevices method in the UserDeviceStore class to get a list of device URIs
for those users. The application populates the user device store when the mobile client registers for
notifications with the MPNS. For more information, see the section, “Notifying the Mobile Client of
New Surveys,” earlier in this chapter.

The following code example shows how the FilteringService class uses one or more ISurvey-
Filter instances in the GetUsersForSurvey method to filter the list of users.

C#
private readonly ISurveyFilter[] filters;
...
public IEnumerable<string> GetUsersForSurvey(Survey survey)
{
 return (from filter in this.filters
 from user in filter.GetUsers(survey)
 select user).Distinct();
}

The current version of the application uses a single filter class named TenantFilter to retrieve a
list of users from the tenant filter store based on the tenant name. The following code example shows
part of this TenantFilter class.

158 chapter four

C#
public class TenantFilter : ISurveyFilter
{
 ...
 private readonly ITenantFilterStore tenantFilterStore;
 ...
 public IEnumerable<string> GetUsers(Survey survey)
 {
 return this.tenantFilterStore.GetUsers(survey.Tenant);
 }
}

Building a List of Surveys to Synchronize with the Mobile Client
Whenever the synchronization process is initiated, the Tailspin Surveys service must build a list of new
surveys that the user is interested in. The current version of the application uses the user’s list of
preferred tenants to select the list of surveys, but Tailspin may expand the set of selection criteria in
the future. The mobile client invokes the GetSurveys web method in the SurveysService class to get
a list of new surveys. The GetSurveys method uses the GetSurveysForUser method of the Filtering-
Service class to get the list of surveys that it will return to the client.

The following code example shows how the FilteringService class gets the list of surveys for a
user.

C#
private readonly ISurveyFilter[] filters;
...
public IEnumerable<Survey> GetSurveysForUser(
 string username, DateTime fromDate)
{
 return (from filter in this.filters
 from survey in filter.GetSurveys(username, fromDate)
 select survey).Distinct(new SurveysComparer());
}

This method can use one or more ISurveyFilter objects to filter the list of surveys. The current
version of the application uses a single filter named TenantFilter. The following code example shows
the GetSurveys method of the TenantFilter class that first retrieves a list of tenants for the user, and
then retrieves a list of surveys for those tenants.

 159Connecting with Services

C#
public IEnumerable<Survey> GetSurveys(string username, DateTime fromDate)
{
 var tenants = this.tenantFilterStore.GetTenants(username);
 if (tenants.Count() == 0)
 {
 tenants = this.tenantStore.GetTenants().Select(t =>
 t.Name.ToLowerInvariant());
 }

 return (from tenant in tenants
 from survey in this.surveyStore.GetSurveys(tenant, fromDate)
 select survey).Distinct(new SurveysComparer());
}

Conclusion
This chapter described the ways in which the Tailspin Surveys mobile client application accesses re-
mote services; it also discussed designing services that Windows Phone can access. You have now seen
a complete picture of the Tailspin Surveys mobile client application, including the application’s UI,
Tailspin’s use of the MVVM pattern, how the application leverages services offered by the Windows
Phone platform, and how it consumes services over the network.

Questions

1. How does Tailspin pass authentication requests to the web service?

a. Tailspin uses basic authentication with the credentials in an authorization header.
b. Tailspin uses Window Live ID.
c. Tailspin uses OAuth.
d. Tailspin uses the Windows Identity Framework (WIF).

2. What notification methods does the Microsoft Push Notification Service support?

a. Toast notifications.
b. Tile notifications.
c. SMS notifications.
d. Raw notifications.

3. Which of the following are elements of a toast notification?

a. A title string that displays after the application icon.
b. A content string that displays after the title.
c. A background image.
d. A parameter value that is not displayed but is passed to the application if the user taps

on the toast.

4. Why does the client need to register with MPNS before it can receive notifications?

a. Because MPNS requires clients to authenticate before it will send notifications.
b. Because MPNS can then notify your service that the client is ready to receive notifica-

tions.
c. Because the client must obtain a unique URI to send to your service.
d. Because the free version of MPNS has a limit on the number of clients that can receive

notifications from your service.
5, How does Tailspin transport data between the client and the web service?

a. Tailspin uses the Microsoft Sync Framework to handle the data transport.
b. Tailspin uses the WCF Data Services framework.
c. Tailspin uses data transfer objects with a WCF REST endpoint.
d. The mobile client application uploads directly to Windows Azure BLOB storage.

6. Why does Tailspin filter data on the server and not on the client?

a. To minimize the amount of data moved over the network.
b. To simplify the application.
c. For security reasons.
d. To minimize storage requirements on the phone.

More Information
For more information about push notifications, see “Push Notifications for Windows Phone” on
MSDN.
For more information about developing websites for Windows Phone, see “Web Development for
Windows Phone” on MSDN.
For more information about security for Windows Phone, see “Security for Windows Phone” on
MSDN.
These and all links in this book are accessible from the book’s online bibliography. You can find the
bibliography on MSDN at: http://msdn.microsoft.com/en-us/library/gg490786.aspx.

 161

Unit tests differ from integration or user acceptance tests in that they test the smallest unit of func-
tionality possible. Typically, a unit test will test the behavior of a specific method. The table below
compares unit and integration tests.

Unit Tests Integration Tests

Dependent systems are not required Dependent systems are required and must be online

Fast to run Slow to run

Typically run frequently (during development and code
check-in)

Typically run periodically

Tests developer expectations Tests real system behavior

No fear of refactoring as the functionality should stay
the same and the unit tests should continue to pass

No fear of refactoring as the functionality should stay the
same and the unit tests should continue to pass

The most important aspect of unit testing compared to integration testing is that unit tests
should not be reliant on the functionality of dependent systems to exercise the code being tested. If
the method being tested handles a condition such as an IsolatedStorageException being thrown, it
would not be ideal to fill up or somehow corrupt isolated storage in order to trigger the code path.
Similarly, testing code that calls services or queries databases should not be reliant on dependent
systems. If a test requires dependent systems to be correctly configured, running, and populated with
a known set of data, the test would be very fragile and would fail if any of these conditions were not
met. In such circumstances you would see many failing tests because of issues with dependent sys-
tems, rather than issues with the code under test.

A good approach to increase software testability is to isolate dependent systems and have them
passed into your business logic using an abstraction such as an interface or abstract class. This ap-
proach allows the dependent system to be passed into the business logic at run time. In addition, in
the interests of testability, it also allows a mock version of the dependent system to be passed in at
test time. For more information see, “Forms of Dependency Injection,” on Martin Fowler’s website.

appendix a Unit Testing Windows
Phone Applications

162 appendix a

As previously mentioned, unit tests should run quickly. The Tailspin mobile client application unit
tests run in less than 10 minutes and are triggered on every check-in to the source control system.
Since the unit tests run quickly, Tailspin developers know very quickly whether their check-in caused
problems. Integration tests typically take longer to run and are usually scheduled less frequently. In
addition to helping catch problems with code integration, unit tests are perhaps most valuable when
refactoring code. Unit tests can be thought of as the code-based documentation of how the code
under test should behave. If the code under test is refactored or reorganized, the functionality should
stay the same and the unit tests should continue to pass. If the unit tests don’t pass, it is possibly due
to improperly refactored code. In addition, another possibility is that the desired code behavior has
changed, in which case the unit tests should be updated or new tests should be added.

Windows Phone 7.1 SDK Abstractions
There are few public interfaces or abstract classes available in the Windows® Phone 7.1 SDK. For this
reason, the Tailspin developers created their own. An interface was generated for each class in the
Windows Phone 7.1 SDK that was used in the Tailspin mobile client application. Then, adapters and
facades, which are wrapper classes that pass parameters and return values to and from the underlying
Windows Phone 7.1 SDK classes, were created.

Figure 1 shows how the CameraCaptureTask class in the Microsoft.Phone.Tasks namespace is
adapted by the CameraCaptureTaskAdapter class in the TailSpin.PhoneClient.Adapters namespace.

Figure 1
Adapting the CameraCaptureTask class

App Unit Test

ICameraCaptureTask

depends depends

CameraCaptureTask
Adapter MockCameraCaptureTask

CameraCaptureTask
(Windows Phone API)

App Unit Test

ICameraCaptureTask

depends depends

CameraCaptureTask
Adapter MockCameraCaptureTask

CameraCaptureTask
(Windows Phone API)

 163Unit Testing Windows Phone Applications

The CameraCaptureTaskAdapter class implements the ICameraCaptureTask interface from the
TailSpin.PhoneClient.Adapters namespace. At run time, the Tailspin mobile client application uses
the CameraCaptureTaskAdapter class directly, rather than the CameraCaptureTask class.

The right hand side of Figure 1 shows the MockCameraCaptureTask class from the TailSpin.
Phone.TestSupport namespace. The MockCameraCaptureTask class also implements the ICamera-
CaptureTask interface and is used in unit tests instead of the CameraCaptureTaskAdapter class. This
allows Tailspin developers to unit test business logic that needs to interact with the camera.

The interfaces and adapters that abstract the Windows Phone 7.1 SDK classes can be found in
the Tailspin.Phone.Adapters and Tailspin.PhoneClient.Adapters projects.

Mock Implementations
Unit tests should focus on how the code under test functions in response to values returned by de-
pendent systems. By using mocks, the return values or exceptions to be thrown by mock instances of
dependent systems can easily be controlled. For more information see, “Exploring the Continuum of
Test Doubles,” in MSDN Magazine.

The TailSpin.Phone.TestSupport project contains mock implementations of the Windows Phone
7.1 SDK adapter classes created by Tailspin. The mock classes were manually developed as it is not
possible to use a mocking framework on the Windows Phone platform. Mocking frameworks require
the ability to emit Microsoft intermediate language (MSIL) code, which is not currently possible on
the Windows Phone platform. The mocks were developed to be general-purpose implementations
with many of them having properties that accept delegates. Delegate-accepting properties enable the
execution of any desired behavior necessary for the unit test. The following code example shows the
MockProtectDataAdapter class.

C#
public class MockProtectDataAdapter : IProtectData
{
 public Func<byte[], byte[], byte[]> ProtectTestCallback { get; set; }

 public Func<byte[], byte[], byte[]> UnProtectTestCallback { get; set; }

 public byte[] Protect(byte[] userData, byte[] optionalEntropy)
 {
 if(ProtectTestCallback == null)
 {
 throw new InvalidOperationException("Must set ProtectTestCallback.");
 }
 return ProtectTestCallback(userData, optionalEntropy);
 }

 public byte[] Unprotect(byte[] encryptedData, byte[] optionalEntropy)
 {
 if (UnProtectTestCallback == null)
 {
 throw new InvalidOperationException("Must set UnProtectTestCallback.");

164 appendix a

 }
 return UnProtectTestCallback(encryptedData, optionalEntropy);
 }
}

The MockProtectDataAdapter class is an example of how a general purpose mock can be given
behavior using delegates. The ProtectTestCallback property should be set with a delegate or a
lambda expression so that a call to the Protect method can execute the delegate. By initializing the
mock in this way, unit tests have unlimited test control of the mock.

Testing Asynchronous Functionality
The following code example shows the ViewModelGetsPictureFromCameraTask test method,
which demonstrates testing asynchronous functionality. The unit test validates that the Picture-
QuestionViewModel class can get an image from the camera capture task and set the view model’s
Picture property to the returned image. The Asynchronous method attribute allows the test to run
until an unhandled exception is thrown, or until the EnqueueTestComplete method is called.

C#
[TestMethod, Asynchronous]
public void ViewModelGetsPictureFromCameraTask()
{
 var mockCameraCaptureTask = new MockCameraCaptureTask();
 WriteableBitmap picture = null;
 var imageUri = new Uri("/TailSpin.PhoneClient.Tests;
 component/ViewModels/Images/block.jpg", UriKind.Relative);
 var src = new BitmapImage();
 src.SetSource(Application.GetResourceStream(imageUri).Stream);
 picture = new WriteableBitmap(src);

 var sri = Application.GetResourceStream(imageUri);
 mockCameraCaptureTask.TaskEventArgs = new SettablePhotoResult
 {
 ChosenPhoto = sri.Stream
 };

 var questionAnswer = new QuestionAnswer
 {
 QuestionText = "Will this test pass?"
 };

 var target = new PictureQuestionViewModel(questionAnswer,
 mockCameraCaptureTask, new MockMessageBox());
 Assert.IsNull(target.Picture);

 target.PropertyChanged += (s, e) =>
 {

 165Unit Testing Windows Phone Applications

 if (e.PropertyName != "Picture") return;

 Assert.IsNotNull(target.Picture);
 Assert.IsTrue(IntArraysMatch(target.Picture.Pixels, picture.Pixels));

 EnqueueTestComplete();
 };

 target.CameraCaptureCommand.Execute();
}

The test first configures an instance of the MockCameraCaptureTask class, setting its Task-
EventArgs property with a SettablePhotoResult that contains a specific picture. The test listens to
the view model’s PropertyChanged event looking for a change to the Picture property. In the event
handler for the PropertyChanged event, the picture is validated by comparing the pixels of the source
and target images.

The Execute method call on the view model’s CameraCaptureCommand triggers the code under
test. The view model calls the Show method on the MockCameraCaptureTask class and then listens
for the Completed event. Once the event occurs and a picture is returned, the Picture property in the
view model is set.

The unit test validates this behavior but must wait for the MockCameraCaptureTask Completed
event to be fired, and the PictureQuestionViewModel PropertyChanged event to be fired, in order
to validate the results.

Using Delegates to Specify Behavior
The following code example shows the SettingPasswordUsesEncryptionServiceAndPersists-
IntoIsoStore test method, which demonstrates how to initialize a mock by passing a delegate to it.
The unit test validates that the SettingsStore class encrypts passwords prior to isolated storage per-
sistence.

C#
[TestMethod]
public void SettingPasswordUsesEncryptionServiceAndPersistsIntoIsoStore()
{
 var encoder = new UTF8Encoding();
 var mockProtectDataAdapter = new MockProtectDataAdapter();
 mockProtectDataAdapter.ProtectTestCallback =
 (userData, optionalEntropy) =>
 {
 var stringUserData = encoder.GetString(userData, 0, userData.Length);
 return encoder.GetBytes(string.Format("ENCRYPTED: {0}",
 stringUserData));
 };
 var target = new SettingsStore(mockProtectDataAdapter);
 IsolatedStorageSettings.ApplicationSettings["PasswordSetting"] = null;

166 appendix a

 target.Password = "testpassword";

 var encryptedByteArray = (byte[])IsolatedStorageSettings
 .ApplicationSettings["PasswordSetting"];
 Assert.AreEqual("ENCRYPTED: testpassword",
 encoder.GetString(encryptedByteArray, 0, encryptedByteArray.Length));
}

The test first configures an instance of the MockProtectDataAdapter class, providing it behavior
that will execute when its Protect method is called. In this case, the behavior is simply to prepend the
string “ENCRYPTED:” to the Password property. The test triggers the code by setting the Password
property on the SettingsStore class. The test then validates that the value that persists into isolated
store was encrypted by the behavior defined in the test.

Running Unit Tests
Tailspin runs unit tests on the emulator and on a real device to make sure the test behavior is not af-
fected by any behavioral differences in the core libraries on the phone as compared to the desktop. It
would be even more valuable if these unit tests could be automatically run every time the code base
is altered. In order to automate the running of unit tests, the developers at Tailspin use a custom
Microsoft Build Engine (MSBuild) task and a custom logger.

This MSBuildTasks.RunWP7UnitTestsInEmulator task performs the following steps:
1. Connects to the Windows Phone emulator
2. Installs the unit test application
3. Launches the unit test application
4. Loads the test results file from the isolated storage in the emulator
5. Examines the test results file for failing tests
In order to capture the test results into a file, a custom logger is used. This FileLogProvider class

in the TailSpin.Phone.TestSupport project extends Microsoft.Silverlight.Testing.Harness.LogProvider
and captures all messages into a text file which is saved to isolated storage.

All links in this book are accessible from the book’s online bibliography. You can find the bibliog-
raphy on MSDN at: http://msdn.microsoft.com/en-us/library/gg490786.aspx.

 167

appendix b Prism Library for
Windows Phone

Prism is a free library from the Microsoft patterns & practices group. The components in this library
can help developers build applications for Windows® Presentation Foundation (WPF), Microsoft
Silverlight® browser plug-in, and the Windows Phone platform that are easier to maintain and update
as requirements change.

Prism was originally built to support composite application scenarios, where you might typically
have a shell application and modules that contribute pieces to the overall application. Although Prism
supports this application style, most of the library components offered by Prism can be useful in
building any WPF or Silverlight application. For example, Prism offers components to support the
Model-View-ViewModel (MVVM) pattern as well as pieces to provide loosely coupled communication
between parts of an application.

Although the use of a display shell is typically not appropriate in a Windows Phone application,
many of the other components within Prism are useful when building Silverlight applications for
Windows Phone. For example, you can use the DelegateCommand provided by Prism to avoid the
requirement to implement event handlers in the code-behind of your views when using the MVVM
pattern for your applications.

Prism includes a small library known as the Prism Library for Windows Phone, which contains a
subset of the main Prism Library features specifically aimed at helping developers implement solutions
to common issues found in developing applications for Windows Phone. The library includes classes
to help developers implement commands, navigation, observable object notifications, data template
selection, interaction with notifications, interaction with the application bar, and more.

This appendix provides an overview of the Prism Library for Windows Phone, which is used in the
Tailspin application for Windows Phone discussed in this guide. For more information and to down-
load Prism, see the Prism home page on the MSDN® developer program website. To provide feedback,
get assistance, or download additional content, visit the Prism community site on CodePlex.

168 appendix b

About Prism for Windows Phone
Windows Phone applications implemented using Silverlight are naturally suited to the MVVM pattern,
which discourages the use of code-behind in the views in favor of handling events and activity in the
view model. However, many common scenarios—such as binding commands to interface objects,
linking methods to application bar buttons, notifying of changes to object properties, and detecting
changes to text-based controls in the view—are challenging to accomplish without using code-behind.
The helper classes and components in Prism Library for Windows Phone are specially designed to
simplify these tasks in Silverlight applications created for Windows Phone.

In addition, the Prism Library for Windows Phone includes helper classes for publishing and sub-
scribing to events, displaying notification messages, and selecting data templates at run time. Many of
these components and helper classes are used in the Tailspin.PhoneClient project. You can download
the complete Windows Phone Tailspin Surveys application for use in conjunction with this guide from
the Microsoft Download Center.

The Prism Library for Windows Phone is provided as source code in the two projects, Microsoft.
Practices.Prism and Microsoft.Practices.Prism.Interactivity, within the Tailspin solution. These solu-
tions implement the Prism Library for Windows Phone library, and there is also a set of tests to help
you explore the use of the classes in the library. These tests can also be used if you extend or modify
the source code to meet your own specific requirements.

Contents of Prism for Windows Phone Library
The Prism Library for Windows Phone contains several namespaces that subdivide the artifacts:

•	 Microsoft.Practices.Prism. This namespace contains classes concerned with detecting and
reacting to change events for properties and objects.

•	 Microsoft.Practices.Prism.Commands. This namespace contains classes concerned with
binding commands to user interface (UI) objects without requiring the use of code-behind in
the view, and composing multiple commands.

•	 Microsoft.Practices.Prism.Events. This namespace contains classes concerned with sub-
scribing to events and with publishing events on the publisher thread, UI thread, or a back-
ground thread.

•	 Microsoft.Practices.Prism.ViewModel. This namespace contains classes that help support
implementation of the view model portion of the MVVM pattern, such as displaying a
template at run time and simplifying the implementation of property change notification.

•	 Microsoft.Practices.Prism.Interactivity. This namespace contains classes and custom
behaviors concerned with handling interaction and navigation for application bar buttons
and with updating the values of view model properties bound to text and password controls.

•	 Microsoft.Practices.Prism.Interactivity.InteractionRequest. This namespace contains
classes concerned with displaying notifications to users.

 169tailspin surveys installation guide

The following tables list the main classes in these namespaces and provide a brief description of
their usage. They do not include all the classes in each namespace; they list only those that implement
the primary functions of the library. For a full reference of all the Prism namespaces, see “Prism” on
MSDN.

Microsoft.Practices.Prism Namespace
The following table lists the main components in the Microsoft.Practices.Prism namespace. These
classes are not used in the Tailspin application.

Class Description

ObservableObject<T> A class that wraps an object so that other classes can be notified of change events. Typically,
this class is set as a dependency property on dependency objects and allows other classes to
observe any changes in the property values. This class is required because, in Silverlight, it is
not possible to receive change notifications for dependency properties that you do not own.

ExtensionMethods
(for List<T>)

This class adds the RemoveAll method to List<T>. The method removes the all the elements
that match the conditions defined by the specified predicate.

For more information about using the ObservableObject class, see the section “Sharing Data
Between Multiple Regions,” in Chapter 7, “Composing the User Interface” in “Prism” on MSDN.

Microsoft.Practices.Prism.Commands Namespace
The following table lists the main components in the Microsoft.Practices.Prism.Commands
namespace.

Class Description Usage in Tailspin application

CompositeCommand This class composes one or more ICommand
implementation instances. It forwards to all
the registered commands, and returns true if
all the commands return true.

This class is not used in the Tailspin applica-
tion.

DelegateCommand This class is an implementation of ICom-
mand. Its delegates can be attached to
access the Execute and CanExecute
methods.

Used in most of the view models for
associating commands with actions that
execute in response to a command being fired.
For more information, see the section,
“Commands,” in Chapter 2, “Building the
Mobile Client.”

For more information about using the DelegateCommand and CompositeCommand classes, see
the section, “Commands” in Chapter 5, “Implementing the MVVM Pattern,” in “Prism” on MSDN.

170 appendix b

Microsoft.Practices.Prism.Events Namespace
The following table lists the main components in the Microsoft.Practices.Prism.Events namespace.
Classes in this namespace support decoupled communication between pieces of an application, such
as between two view models. These classes are not used in the Tailspin application.

Class Description

CompositePresentationEvent A class that manages publication and subscription to events.

SubscriptionToken The subscription token returned from an event subscription method. This class
provides methods to compare tokens.

EventSubscription This class provides a method for retrieving a Delegate that executes an Action
depending on the value of a second filter predicate that returns true if the action
should execute.

BackgroundEventSubscription This class extends EventSubscription to invoke the Action delegate on a back-
ground thread.

DispatcherEventSubscription This class extends EventSubscription to invoke the Action delegate in a specific
Dispatcher instance.

EventAggregator This class implements a service that stores event references and exposes the
GetEvent method to retrieve a specific event type.

For more information about publishing and subscribing to events, see Chapter 9, “Communicating
between Loosely Coupled Components,” in “Prism” on MSDN.

Microsoft.Practices.Prism.ViewModel Namespace
The following table lists the main components in the Microsoft.Practices.Prism.ViewModel
namespace.

Class Description Usage in Tailspin application

DataTemplateSelector This class implements a custom Content-
Control that changes its ContentTemplate
based on the content it is presenting. To
determine the template it must use for the
new content, the control retrieves it from
its resources using the name for the type
of the new content as the key.

Used in the TakeSurveyView view to select the
appropriate question view, depending on the
type of question. For more information, see the
section, “Data Binding and the Pivot Control,”
in Chapter 2, “Building the Mobile Client.”

NotificationObject This is a base class for items that support
property notification. It provides basic
support for implementing the INotify-
PropertyChanged interface and for
marshaling execution to the UI thread.

Used in the ViewModel, QuestionViewModel,
QuestionOption, and QuestionAnswer classes.
For more information, see the section,
“Displaying Data,” in Chapter 2, “Building the
Mobile Client.”

For more information about using the DataTemplateSelector class, see “MVVM QuickStart” in
“Prism” on MSDN.

 171tailspin surveys installation guide

Microsoft.Practices.Prism.Interactivity Namespace
The following table lists the main components in the Microsoft.Practices.Prism.Interactivity
namespace.

Class Description Usage in Tailspin application

ApplicationBarButtonCommand This class implements a behavior
that associates a command with an
application bar button.

Used in the SurveyListView, TakeSur-
veyView, AppSettingsView, and FilterSet-
tingsView views to bind the click events for
application bar buttons to methods in the
view models. For more information, see the
section, “Commands,” in Chapter 2,
“Building the Mobile Client.”

ApplicationBarButtonNavigation This class implements a behavior
that subscribes to an application
bar button click event and navigates
to a specified page.

This class is not used in the Tailspin
application.

ApplicationBarExtensions This class provides the FindButton
method to find a button on the
phone’s application bar.

The FindButton method is used by the
ApplicationBarButtonCommand class to
find a button by name.

UpdatePasswordBindingOn
 PropertyChanged

This class implements a behavior
that updates the source of a
binding on a password box as the
text changes. By default in
Silverlight, the bound property is
only updated when the control
loses focus.

Used in the AppSettingsView view to
ensure that the user’s password input is
updated in the view model even if the
password box does not lose focus. For more
information, see the section, “Displaying
Data,” in Chapter 2, “Building the Mobile
Client.”

UpdateTextBindingOn
PropertyChanged

This class implements a behavior
that updates the source of a
binding on a text box as the text
changes. By default in Silverlight,
the bound property is only updated
when the control loses focus.

Used in the AppSettingsView and Open-
QuestionView views to ensure that the
user’s text input is updated in the view
model even if the text box does not lose
focus. For more information, see the
section, “Displaying Data,” in Chapter 2,
“Building the Mobile Client.”

Microsoft.Practices.Prism.Interactivity.InteractionRequest
Namespace

The following table lists the main components in the Microsoft.Practices.Prism.Interactivity.
InteractionRequest namespace.

Class Description Usage in Tailspin application

InteractionRequest This class represents a request for user
interaction. View models can expose interac-
tion request objects through properties and
raise them when user interaction is required so
that views associated with the view models can
materialize the user interaction using an
appropriate mechanism.

Used in the SurveyListViewModel, AppSet-
tingsViewModel, and FilterSettingsView-
Model view models to generate interaction
requests that display notification messages.
For more information, see the section, “User
Interface Notifications,” in Chapter 2,
“Building the Mobile Client.”

MessageBoxAction This class displays a message box as a result of
an interaction request.

Used in the SurveyListView, AppSettings-
View, and FilterSettingsView views to display
message boxes. For more information, see the
section, “User Interface Notifications,” in
Chapter 2, “Building the Mobile Client.”

ToastPopupAction This class displays a pop-up toast item with
specified content as a result of an interaction
request. After a short period, it removes the
pop-up window.

Used in the SurveyListView view to display
information about the most recent synchro-
nization with the remote service. For more
information, see the section, “User Interface
Notifications,” in Chapter 2, “Building the
Mobile Client.”

For more information about interaction requests and displaying notifications, see Chapter 6,
“Advanced MVVM Scenarios” in “Prism” on MSDN.

These and all links in this book are accessible from the book’s online bibliography. You can find
the bibliography on MSDN at: http://msdn.microsoft.com/en-us/library/gg490786.aspx.

 173

Answers to Questions

Chapter 2, Building the Mobile Client

1. Which of the following are good reasons to use the MVVM pattern for your Windows®
Phone application?

a. It improves the testability of your application.
b. It facilitates porting of the application to another platform, such as the desktop.
c. It helps to make it possible for designers and developers to work in parallel.
d. It may help you avoid risky changes to existing model classes.

Answer: (a) True. This is a valid reason for using the MVVM pattern. (b) False. The view
and view model are often tightly coupled and use features of the Windows Phone platform,
making these elements difficult to port. (c) True. Designers can work on the XAML files that
make up the view independently of the developers working on the code in the view models.
(d) True. Sometimes you may have existing model objects that encapsulate complex domain
logic that you don’t want to change. In this case, the view model acts as an adaptor, exposing
the model to the view.

For more information, see the section, “Benefits of MVVM,” in Chapter 2, “Building the Mobile
Client.”

2. Which of the following are good reasons not to use the MVVM pattern for your Windows
Phone application?

a. You have a very tight deadline to release the application.
b. Your application is relatively simple with only two screens and no complex logic to

implement.
c. Windows Phone controls are not ideally suited to the MVVM pattern.
d. It’s unlikely that your application will be used for more than six months before it is

completely replaced.

Answer: (a) True. The MVVM pattern tends to add complexity to the application, especially
during the initial development. However, you should carefully evaluate the long-term benefits
of using the MVVM pattern. (b) True. Such a simple application may not warrant the over-

174

head of implementing the MVVM pattern. (c) False. The Windows Phone controls support
binding in the same way as standard Microsoft® Silverlight® browser plugin controls. In some
cases though, you may have to develop custom behaviors to get specific functionality.
(d) True. One of the advantages of the MVVM pattern is improved maintainability. For an
application with a short shelf life, in may not be worth the overhead of the development pro-
cess associated with the MVVM pattern.

For more information, see the section, “Benefits of MVVM,” in Chapter 2, “Building the Mobile
Client.”

3. Which of the following are correct about tombstoning?

a. Tombstoned applications have been terminated.
b. Tombstoned applications remain intact in memory.
c. Information about a tombstoned application’s navigation state and state dictionaries

are preserved for when the application is relaunched.
d. A device will maintain tombstoning information for up to five applications at once.

Answer: (a) True. The tombstoning process does terminate an application. (b) False. The
tombstoning process terminates an application; therefore it does not remain in memory.
(c) True. When an application is tombstoned, information about its navigation state and
state dictionaries populated by the application during the Deactivated event are preserved.
(d) True. A Windows Phone device will maintain tombstoning information for up to five ap-
plications at a time.

For more information, see the section, “The Structure of the Tailspin Surveys Client Applica-
tion,” in Chapter 2, “Building the Mobile Client.”

4. Which of the following describe the role of the view model locator?

a. The view model locator configures bindings in the MVVM pattern.
b. In the Tailspin mobile client, the view model locator is responsible for instantiating view

model objects.
c. The view model locator connects views to view models.
d. Data template relations offer an alternative approach to a view model locator.

Answer: (a) False. Although the view model locator establishes the link between a view and
a view model, the bindings are configured in the view’s XAML code. (b) False. In the Tailspin
application, the dependency injection container instantiates the view model objects and man-
ages their lifetimes. (c) True. This is the core functionality of the view model locator.
(d) True. This is an alternative way to connect views to view models.

For more information, see the section, “Connecting the View and the View Model,” in Chapter
2, “Building the Mobile Client.”

 175Answers to Questions

5. Where does the Back button take you?

a. To the previous view in the navigation stack.
b. It depends on what the code in the view model does.
c. If the current view is the last one in the navigation stack, you leave the application.
d. If your application is on the top of the phone’s application stack, it takes you back to

your application.

Answer: (a) True. This is what happens within your application. (b) False. The behavior of
the hardware Back button is determined by the operating system. (c) True. This returns you
to the phone’s Start screen. (d) True. You can use the Back button to navigate back to your
application from the phone’s environment.

For more information, see the section, “Page Navigation,” in Chapter 2, “Building the Mobile Cli-
ent.”

6. Why should you not use code-behind when you’re using the MVVM pattern?

a. The view model locator always intercepts the events, so code-behind code never
executes.

b. The MVVM pattern enforces a separation of responsibilities between the view and the
view model. UI logic belongs in the view model.

c. If you are using the MVVM pattern, other developers will expect to see your code in
the view model classes and not in the code-behind.

d. Code-behind has a negative effect on view performance.

Answer: (a) False. The view model locator does not intercept control events. (b) True. This
is the separation of responsibilities between the view and the view model. (c) True. This is the
expected place for UI logic. (d) False. Whether code is in code-behind files or in view model
classes has no effect on the application’s performance.

For more information, see the section, “Using the Model-View-View Model Pattern,” in Chapter
2, “Building the Mobile Client.”

Chapter 3, Using Services on the Phone

1. The Data Protection API (DPAPI) can be used to encrypt and decrypt data in isolated
storage. What does the DPAPI use as an encryption key?

a. A user-generated private key.
b. The user credentials.
c. The phone credentials.
d. The user and phone credentials.

Answer: (a) False. The Windows Phone platform does not support generated private keys
for encrypting and decrypting data in isolated storage. (b) False. User credentials alone are
not used to encrypt and decrypt data in isolated storage. (c) False. Phone credentials alone

176

are not used to encrypt and decrypt data in isolated storage. (d) True. The DPAPI solves the
problem of explicitly generating and storing a cryptographic key by using the user and phone
credentials to encrypt and decrypt data in isolated storage.

For more information, see the section, “Security,” in Chapter 3, “Using Services on the Phone.”

2. What happens when your application is reactivated?

a. You return to the first screen in your application.
b. The operating system makes sure that the screen is displayed as it was when the

application was deactivated.
c. The operating system recreates the navigation stack within your application.
d. The Launching event is raised.

Answer: (a) False. You are returned to the last screen that was visible before the application
was deactivated. (b) False. It’s your application’s responsibility to restore whatever state is
required to reset the application’s appearance and behavior. (c) True. If you were several pag-
es deep within the application when it was deactivated, you will still be several pages deep
when the application is reactivated. (d) False. The Launching event is raised when the ap-
plication is run from scratch, not when it is reactivated. There is an Activated event that is
raised when the application is reactivated.

For more information, see the section, “Handling Activation and Deactivation,” in Chapter 3,
“Using Services on the Phone.”

3. What data should you save when you handle the deactivation request?

a. State data required to rebuild the state of the last screen that was active before the
application was deactivated.

b. State data required to rebuild the state of previous screens that the user had navigated
through before the application was deactivated.

c. Data that is normally persisted to isolated storage by the application at some point.
d. The currently active screen.

Answer: (a) True. It’s the application’s responsibility to manage the state data used to redis-
play the UI, although the operating system will remember which page in your application was
visible when it is deactivated. (b) True. It’s the application’s responsibility to manage the
state data used to redisplay the UI, including any screens in the application’s navigation stack.
(c) True. There is no guarantee that an application will be reactivated, so you should save
anything important. (d) False. The operating system will record which screen was active for
you.

For more information, see the section, “Handling Activation and Deactivation,” in Chapter 3
“Using Services on the Phone.”

 177Answers to Questions

4. Why does Tailspin use the Reactive Extensions (Rx) for .NET?

a. To handle notifications from the Microsoft Push Notification Service.
b. To handle UI events.
c. To manage asynchronous tasks.
d. To make the code that implements the asynchronous and parallel operations more

compact and easier to understand.

Answer: (a) False. You don’t need to use the Rx for this task. (b) False. You don’t need to
use the Rx for this task. (c) True. This is a core use of the Rx. (d) True. This is a benefit of
using Rx.

For more information, see the section, “Synchronizing Data between the Phone and the Cloud,”
in Chapter 3, “Using Services on the Phone.”

 5. What factors should you take into account when you use location services on the phone?

a. The level of accuracy your application requires for its geo-location data.
b. Whether the device has a built-in GPS.
c. How quickly you need to obtain the current location.
d. Whether the user has consented to your application using the phone’s GPS data.

Answer: (a) True. You can specify the required level of accuracy, and this will affect how the
phone obtains its current position: using GPS, or from triangulation. (b) False. The hardware
specification for the Windows Phone device includes a GPS module. (c) True. Using GPS is
often slower, though more accurate, than triangulation. (d) True. The guidelines for the
phone state that you must obtain the user’s consent before using geo-location data from the
phone in your application.

For more information, see the section, “Using Location Services on the Phone,” in Chapter 3,
“Using Services on the Phone.”

6. Which factors constrain the use of a ResourceIntensiveTask agent?

a. Resource-intensive agents do not run unless the Windows Phone device is connected
to an external power source.

b. Resource-intensive agents do not run unless the Windows Phone device has a network
connection over Wi-Fi or through a connection to a PC.

c. Resource-intensive agents do not run unless the Windows Phone device’s battery
power is greater than 90%.

d. Resource-intensive agents do not run unless the Windows Phone device screen is
locked.

Answer: (a) True. A Windows Phone device must be connected to an external power source
for a ResourceIntensiveTask agent to run. (b) True. A Windows Phone device must have a
network connection over Wi-Fi or through a connection to a PC for a ResourceIntensiveTask
agent to run. (c) True. A Windows Phone device must have battery power of greater than

178

90% for a ResourceIntensiveTask agent to run. (d) True. A Windows Phone device screen
must be locked for a ResourceIntensiveTask agent to run.

For more information, see the section, “Synchronizing Data between the Phone and the Cloud,”
in Chapter 3, “Using Services on the Phone.”

Chapter 4, Connecting with Services

1. How does Tailspin pass authentication requests to the web service?

a. Tailspin uses basic authentication with the credentials in an authorization header.
b. Tailspin uses Windows Live® ID.
c. Tailspin uses OAuth.
d. Tailspin uses the Windows Identity Framework (WIF).

Answer: (a) True. This is Tailspin’s current approach. (b) False. However, this might be a
mechanism for Tailspin to adopt in the future. (c) False. However, this might be a mechanism
for Tailspin to adopt in the future. (d) False. Tailspin uses WIF to process the authentication
request in the web service.

For more information, see the section, “Authenticating with the Surveys Service,” in Chapter 4,
“Connecting with Services.”

2. What notification methods does the Microsoft Push Notification Service (MPNS) support?

a. Toast notifications.
b. Tile notifications.
c. SMS notifications.
d. Raw notifications.

Answer: (a) True. Used for important notifications for immediate viewing, such as breaking
news. (b) True. Used for informational notifications such as a temperature change for a
weather application. (c) False. This is not a feature of MPNS. (d) True. You can use raw no-
tifications in addition to tile and toast notifications to send information directly to your ap-
plication.

For more information, see the section, “Notifying the Mobile Client of New Surveys,” in Chap-
ter 4, “Connecting with Services.”

3. Which of the following are elements of a toast notification?

a. A title string that displays after the application icon.
b. A content string that displays after the title.
c. A background image.
d. A parameter value that is not displayed but is passed to the application if the user taps

on the toast.

 179Answers to Questions

Answer: (a) True. Toast notifications contain a boldface title string that displays immedi-
ately after the application icon. (b) True. Toast notifications include a non-boldface content
string that displays immediately after the title. (c) False. This is not an element of a toast
notification. (d) True. Toast notifications include a parameter value that is not displayed but
is passed to the application if the user taps on the toast.

For more information, see the section, “Notifying the Mobile Client of New Surveys,” in Chap-
ter 4, “Connecting with Services.”

4. Why does the client need to register with MPNS before it can receive notifications?

a. Because MPNS requires clients to authenticate before it will send notifications.
b. Because MPNS can then notify your service that the client is ready to receive notifica-

tions.
c. Because the client must obtain a unique URI to send to your service.
d. Because the free version of MPNS has a limit on the number of clients who can receive

notifications from your service.

Answer: (a) False. There’s no requirement for MPNS clients to authenticate. (b) False. It is
not the responsibility of MPNS to notify your service about clients. Clients must also register
directly with your service. (c) True. Your client obtains a unique URI from the MPNS that it
then forwards to your service. Your service can then pass the URI to the MPNS when it asks
the MPNS to notify your client. (d) False. The free version of the MPNS has limits on the
number of messages that you can send in a day, but does not limit the number of clients.

For more information, see the section, “Notifying the Mobile Client of New Surveys,” in Chap-
ter 4, “Connecting with Services.”

5. How does Tailspin transport data between the client and the web service?

a. Tailspin uses the Microsoft Sync Framework to handle the data transport.
b. Tailspin uses the Windows Communication Foundation (WCF) Data Service frame-

work.
c. Tailspin uses data transfer objects with a WCF REST endpoint.
d. The mobile client application uploads directly to Windows Azure™ technology

platform blob storage.

Answer: (a) False. However, Tailspin may consider this in the future. (b) False. However,
Tailspin may consider this in the future when it fully supports Windows Azure table storage.
(c) True. Tailspin currently uses this approach. The data transfer requirements are relatively
simple, so this approach was not too difficult to implement. (d) False. This approach would
not be secure or robust enough. The application also uses Windows Azure table storage.

For more information, see the section, “Accessing Data in the Cloud,” in Chapter 4, “Connecting
with Services.”

6. Why does Tailspin filter data on the server and not on the client?

a. To minimize the amount of data moved over the network.
b. To simplify the application.
c. For security reasons.
d. To minimize storage requirements on the phone.

Answer: (a) True. Bandwidth costs are a significant consideration for any mobile applica-
tion. (b) False. In some ways this complicates the application because the client has to send
the filter criteria up to the server. (c) False. Not in Tailspin’s scenario, but in other applica-
tions the filtering may determine what data the user is allowed to see rather than what they
want to see. (d) True. This is not the primary reason for Tailspin but it does mean that the
phone does not download data that is not relevant to the user and cache it while it filters.

For more information, see the section, “Filtering Data,” in Chapter 4, “Connecting with Services.”

 181

Index

A
activation and deactivation, 67-78
actors, 5
AddMediaAnswer method, 145
AddSurveyAnswers method, 146
App-SettingsViewModel Submit method, 134
Application Tile, 98, 99
Application_Activated event handler, 69-70
ApplicationApplication_LaunchingClosing method, 87
ApplicationFrameNavigationService class, 46-48
Application_Launching method, 87
applications

components, 6-7
example, xix
mobile client building, 13
settings, 59
structure, 14-18
testing, 30-31

AppSettingsViewModel class, 21, 32-34, 80-81
AppSettingsView.xaml file, 32-33, 79-80
App.xaml file, 28-29
asynchronous functionality, 164-165
asynchronous interactions, 78
audience, xvii
audio

data, 107
XNA Interop to record audio, 112-115

automatic synchronization, 84, 87-92

B
BindChannelAndUpdateDeviceUriInService class, 132
book structure, xviii-xix
BuildPivotDimensions method, 36-37
business model, 6

C
CameraCaptureCommand command, 108-110
CameraCaptureTask class, 107-108

unit tests, 162
CameraCaptureTask command, 111
capturing image data chooser, 106
Christine See phone specialist role
clients See mobile client building
cloud

accessing data, 141-150
exposing data, 142

commands, 42-44
connecting with services See services
ContainerLocator class, 30
ContextMenu control, 24
CustomServiceHostFactory class, 123-124

D
data

access in the cloud, 141-150
audio data, 107
in the cloud, 142
consuming, 142-143
consuming in the Windows Phone client

application, 146-150
display, 31-41
filtering, 150-159
formats, services, 142

data binding
and the pivot control, 34-41
on the settings screen, 32-34

deactivation and activation, 67-78
delegates to specify behavior, 165-166
dependency injection, 15-16

182

development process goals, 12
devices, 153, 157-158
diagnostic information, 115
DoesPageNeedtoRecoverFromTombstoning method, 70,

71

E
enumerable sequence, 79
errors

and diagnostic information, 115
notifications, 50

example application, xix

F
filter data storage, 155-157
FilteringService class, 157, 158
FilterSettingsView-Model class, 45-46
FilterSettingsView.xaml file, 45, 49
focus event handling, 41
Funq dependency injection container, 16
future claims-based approach, 122

G
GetNewSurveys method, 99
getNewSurveys task, 95-97
GetSurveys method, 144-145, 158-159

H
HttpClient class, 126, 133

I
ICameraCaptureTask interface, 107-108
IClaimsPrincipal object, 121
ILocationService interface, 104-106
images

and audio data, 106-115
data capture, 106-112

informational or warning notifications, 50
integration tests See unit and integration tests
IPhoneApplicationServiceFacade interface, 71
IProtectData interface, 62
IRegistrationServiceClient interface, 129
isolated storage, 56-67
ISurveysServiceClient interface, 146-147
ISurveyStore interface, 66-67
ISV, 5
IT professional role, xxi

J
Jana See software architect role

L
list of surveys to synchronize with the mobile client,

158-159
Live Tiles, 97-103
location services, 103-106
LocationService class, 105-106

M
manual synchronization, 84-85, 93-97
Maps property, 41
Markus See senior software developer role
Microsoft Push Notifications Service (MPNS), 127-129,

140
Microsoft.Practices.Prism namespace, 169
Microsoft.Practices.Prism.Commands namespace, 169
Microsoft.Practices.Prism.Events namespace, 170
Microsoft.Practices.Prism.Interactivity namespace, 171
Microsoft.Practices.Prism.ViewModel namespace, 170
mobile client building, 9-54

application structure, 14-18
applications, 13
AppSettingsViewModel class, 21
ContextMenu control, 24
dependency injection, 15-16
development process goals, 12
Funq dependency injection container, 16
NavigationService class, 21
non-functional goals, 11
overview, 9-12
page navigation, 18-23
page navigation diagram, 19
Pivot control, 23
Styles.xaml page, 22-23
styling and control templates, 24
TailSpin.PhoneClient Project, 17
TailSpin.PhoneClient.Adapters Project, 17
TailSpin.PhoneOnly solution, 16
TakeSurveyViewModel class, 21-22
UI description, 23
UI design, 18-24
usability goals, 10
See also MVVM pattern

mock implementations, 163-164
MockProtectDataAdapter class, 163-164
model classes, 55-56

 183index

Model-View-ViewModel Pattern See also MVVM pattern
more information, xxi
MVVM pattern, 25-52

accessing services, 52
application testing, 30-31
ApplicationFrameNavigationService class, 46-48
AppSettingsViewModel class, 32-34
AppSettingsView.xaml file, 32-33
App.xaml file, 28-29
benefits, 27
BuildPivotDimensions method, 36-37
commands, 42-44
ContainerLocator class, 30
data binding and the pivot control, 34-41
data binding on the settings screen, 32-34
data display, 31-41
error notifications, 50
FilterSettingsView-Model class, 45-46
FilterSettingsView.xaml file, 45, 49
focus event handling, 41
informational or warning notifications, 50
inside the implementation, 28-31
Maps property, 41
mobile client building, 25-52
navigation requests, 44-49
ObservableCollection class, 37
overview, 25-27
pivot control, 35, 38
PivotItem control, 35
premise, 25
SurveyListView page, 34, 35, 42-43
SurveyListViewModel class, 35-36, 43, 44
SurveyListViewModelFixture class, 30-31
SurveyListView.xaml file, 29, 50-52
TakeSurveyViewModel class, 40-41
TakeSurveyView.xaml file, 39-40
UI notifications, 49-52
view model connection to view, 28
ViewModel-Locator class, 29-30
ViewModelLocator object, 39

N
namespaces, 168
navigation requests, 44-49
NavigationService class, 21
NewSurveyNotificationCommand class, 136, 157
non-functional goals, 11
notifications

of new surveys, 126-141

payloads, 140-141
registering for, 129-136
sending, 136-140

O
observable sequences, 79
ObservableCollection class, 37
Observable.FromEvent method, 110
OnInvoke method, 90-91
OnNavigationService_Navigated event handler, 75
OnPageResumeFromTombstoning class, 77
Open Authentication (OAuth) 2.0 protocol, 122

P
page navigation, 18-23

diagram, 19
Password property, 59-61
phone applications See also unit tests
phone specialist role, xx
PhoneApplicationPage class, 71-72
PhotoResult class, 108
PinCommand property, 101-103
Pivot control, 23, 35, 38, 77
PivotItem control, 35
Poe See IT professional role
PostJson method, 133
preface, xvii-xxi
premise, 25
prerequisites, xix-xx
Prism library, 167-172

Microsoft.Practices.Prism namespace, 169
Microsoft.Practices.Prism.Commands

namespace, 169
Microsoft.Practices.Prism.Events namespace, 170
Microsoft.Practices.Prism.Interactivity

namespace, 171
Microsoft.Practices.Prism.Interactivity.Interaction-

Request namespace, 172
Microsoft.Practices.Prism.ViewModel

namespace, 170
namespaces, 168

ProtectedData class, 62
PushNotification class, 137

R
Reactive Extensions (Rx), 78-82
RegisterRoutes method, 143-144
RegistrationService class, 156-157
RegistrationServiceClient class, 132-133

184

ResetUnopenedSurveyCount method, 100
roles, xx-xxi
RunPeriodicTask method, 91

S
SaveAndUpdateMediaAnswers method, 148-149
SavePictureFile method, 111
SaveSurveyTemplates method, 99-100
ScheduledActionClient class, 88-90
ScheduledAgent class, 90-91
secondary Tile, 98, 101
security, 58
SelectMany method, 149-150
SendMessage method, 137-139
senior software developer role, xxi
services, 119-160

accessing, 52
accessing data in the cloud, 141-150
AddMediaAnswer method, 145
AddSurveyAnswers method, 146
App-SettingsViewModel Submit method, 134
BindChannelAndUpdateDeviceUriInService

class, 132
CustomServiceHostFactory class, 123-124
data consuming, 142-143
data consuming in the Windows Phone client

application, 146-150
data filtering, 150-159
data formats, 142
data in the cloud, 142
devices to notify, 153
devices to receive notifications, 157-158
filter data storage, 155-157
FilteringService class, 157, 158
future claims-based approach, 122
GetSurveys method, 144-145, 158-159
HttpClient class, 126, 133
IClaimsPrincipal object, 121
IRegistrationServiceClient interface, 129
ISurveysServiceClient interface, 146-147
list of surveys to synchronize with the mobile

client, 158-159
Microsoft Push Notifications Service (MPNS),

127-129, 140
NewSurveyNotificationCommand class, 136, 157
notification payloads, 140-141
notification registration, 129-136
notification sending, 136-140

notifications of new surveys, 126-141
Open Authentication (OAuth) 2.0 protocol, 122
PostJson method, 133
PushNotification class, 137
RegisterRoutes method, 143-144
RegistrationService class, 156-157
RegistrationServiceClient class, 132-133
SaveAndUpdateMediaAnswers method, 148-149
SelectMany method, 149-150
SendMessage method, 137-139
Simple Web Token (SWT), 122-123
SimulatedWebServiceAuthorizationManager

class, 124-125
SSL, 143
SurveyAnswerDto object, 149-150
Surveys service authentication, 119-126
surveys to synchronize, 154-155
surveys to synchronize with the mobile client,

158-159
SurveysService class, 144-145
TenantFilter class, 157-159
TenantFilterStore class, 155
ToastNotificationPayloadBuilder class, 140-141
UpdateReceiveNotifications method, 129-130, 131
user device table, 152
user preferences, 151-152
UserDeviceStore class, 156
WCF REST Service, 143-146
Windows Azure, 135
See also services on the phone

services on the phone, 55-116
activation and deactivation, 67-78
application settings, 59
Application Tile, 98, 99
ApplicationApplication_LaunchingClosing

method, 87
Application_Launching method, 87
AppSettingsViewModel class, 80-81
AppSettingsView.xaml file, 79-80
asynchronous interactions, 78
audio data recording, 107
automatic synchronization, 84, 87-92
CameraCaptureCommand command, 108-110
CameraCaptureTask class, 107-108
CameraCaptureTask command, 111
capturing image data chooser, 106
DoesPageNeedtoRecoverFromTombstoning

IPhoneApplicationServiceFacade method, 71
DoesPageNeedtoRecoverFromTombstoning

method, 71

 185index

DoesPageNeedtoRecoverFromTombstoning
method, 70

enumerable sequence, 79
GetNewSurveys method, 99
getNewSurveys task, 95-97
ICameraCaptureTask interface, 107-108
ILocationService interface, 104-106
image and audio data, 106-115
IPhoneApplicationServiceFacade interface, 71
IProtectData interface, 62
isolated storage, 56-67
ISurveyStore interface, 66-67
limitations of the current approach, 86
Live Tiles, 97-103
location services, 103-106
LocationService class, 105-106
logging errors and diagnostic information, 115
manual synchronization, 84-85, 93-97
model classes, 55-56
observable sequences, 79
Observable.FromEvent method, 110
OnInvoke method, 90-91
OnNavigationService_Navigated event handler, 75
OnPageResumeFromTombstoning class, 77
overview, 57-58
Password property, 59-61
PhoneApplicationPage class, 71-72
PhotoResult class, 108
PinCommand property, 101-103
ProtectedData class, 62
reactivation and the pivot controls, 77
Reactive Extensions (Rx), 78-82
ResetUnopenedSurveyCount method, 100
RunPeriodicTask method, 91
SavePictureFile method, 111
SaveSurveyTemplates method, 99-100
ScheduledActionClient class, 88-90
ScheduledAgent class, 90-91
secondary Tile, 98, 101
security, 58
SettablePhotoResult class, 108
StartRecording method, 112-113
StopRecording method, 113-114
storage format, 58
Subscribe method, 81-82, 92
survey data, 63
SurveyAnswer class, 63
SurveyListViewModel class, 76, 93
SurveysSynchronizationService class, 94-95

SurveyStore class, 64-66
synchronization methods, 94
synchronizing phone and cloud, 83-97
TakeSurveyView class, 102-103
TakeSurveyView page, 77-78
TaskSummaryResult object, 91-92
ViewModel class, 72-74
VoiceQuestionViewModel class, 112, 114-115
WebException exception, 81-82
XNA Interop to record audio, 112-115

SettablePhotoResult class, 108
Simple Web Token (SWT), 122-123
SimulatedWebServiceAuthorizationManager

class, 124-125
software architect role, xxi

Windows Phone 7.5, 3
SSL, 143
StartRecording method, 112-113
StopRecording method, 113-114
storage

format, 58
isolated storage, 56-67

strategy, 1-2
structure of this book, xviii-xix
Styles.xaml page, 22-23
styling and control templates, 24
Subscribe method, 81-82, 92
subscribers, 5
support, xxi
survey data, 63
SurveyAnswer class, 63
SurveyAnswerDto object, 149-150
SurveyListView page, 34, 35, 42-43
SurveyListViewModel class, 76, 93

MVVM pattern, 35-36, 43, 44
SurveyListViewModelFixture class, 30-31
SurveyListView.xaml file, 29, 50-52
surveyors, 5
surveys

synchronizing, 154-155
synchronizing with the mobile client, 158-159

Surveys application, 4-5
Surveys service authentication, 119-126
SurveysService class, 144-145
SurveysSynchronizationService class, 94-95
SurveyStore class, 64-66
synchronization

methods, 94
phone and cloud, 83-97

186

T
Tailspin scenario, 1-7

actors, 5
application components, 6-7
business model, 6
goals and concerns, 2-3
ISV, 5
strategy, 1-2
subscribers, 5
surveyors, 5

TailSpin.PhoneClient Project, 17
TailSpin.PhoneClient.Adapters Project, 17
TailSpin.PhoneOnly solution, 16
TakeSurveyView class, 102-103
TakeSurveyView page, 77-78
TakeSurveyViewModel class

mobile client building, 21-22
MVVM pattern, 40-41

TakeSurveyView.xaml file, 39-40
TaskSummaryResult object, 91-92
templates, 24
TenantFilter class, 157-159
TenantFilterStore class, 155
tests See unit and integration tests
ToastNotificationPayloadBuilder class, 140-141

U
UI

description, 23
design, 18-24
notifications, 49-52

unit and integration tests, 161-162
unit tests, 161, 162, 166

asynchronous functionality, 164-165
CameraCaptureTask class, 162
delegates to specify behavior, 165-166
mock implementations, 163-164
MockProtectDataAdapter class, 163-164
unit and integration tests, 162
ViewModelGetsPictureFromCameraTask

method, 164-165
Windows Phone 7.1 SDK abstractions, 162-163

UpdateReceiveNotifications method, 129-130, 131
usability goals, 10
user device table, 152
user preferences, 151-152
UserDeviceStore class, 156

V
view model connection to view, 28
ViewModel class, 72-74
ViewModel-Locator class, 29-30
ViewModelGetsPictureFromCameraTask method,

164-165
ViewModelLocator object, 39
VoiceQuestionViewModel class, 112, 114-115

W
warning notifications, 50
WCF REST Service, 143-146
WebException exception, 81-82
who’s who, xx-xxi
Windows Azure, 135
Windows Phone 7.1 SDK abstractions, 162-163
Windows Phone 7.5, 3
Windows phone applications See unit tests
Windows Phone OS 7.1, 3

X
XNA Interop to record audio, 112-115

