B Microsoft

Prism for the
Windows Runtime for
Windows 8:

Developing a Windows Store
business app using
C#, XAML, and Prism

David Britch

Colin Campbell
Francis Cheung
Diego Antonio Poza
Rohit Sharma
Mariano Vazquez
Blaine Wastell

May 2013

patterns & practices

This documentis provided “as-is”. Information and views expressed in this document, including URL
and otherlInternet web site references, may change without notice.

Some examples depicted herein are provided forillustration onlyand are fictitious. No real
association orconnectionisintended orshould be inferred.

Thisdocument does not provide you with any legal rights to any intellectual property in any
Microsoft product. You may copy and use this document foryour internal, reference purposes.

© 2013 Microsoft. All rightsreserved.

Microsoft, Visual Basic, Visual Studio, Windows Azure, and Windows are trademarks of the Microsoft
group of companies. All othertrademarks are property of theirrespective owners.

Contents
Developing a business app for the Windows Store using C#: AdventureWorks Shopper.................... 1
(D10 Y a1 o - o IO PPN 1
L=y (=T o [U TR) = PPN 1
Table of contents at @ GlAaNCe ...ccvvue i 2
T T YT oY= o E o U T ol =t 3
Getting started with AdventureWorks ShOPPETieiiiie e 4
(7017 a1 oY Ic FE N 4
Building and running the SamMpPle..........coo i e eaaa 4
Projects and sOlUtioN FOIAEIS i et e e e e e e 5
The AdventureWorks.ShOpPer PrOJECE. ... ciii i i e e et e e e e e e e aaaaaas 6
The Adventure Works.UILOZIC PrOjEC e e eeeeiiicie e et e et e e e e et e e e e e e e e aeanaaaas 7
The AdventureWorks.WebServices ProjECt........uuuuiieieeeiieeiiiiiiie e eeeeevtieeee e e et eeeeaaaaanns 7
The Microsoft.Practices.Prism.PubSUbEveNts projectcoceuueeeiiiiiiiiiiiice e, 8
The Microsoft.Practices.Prism.StOre APPS PrOJECeieiiieeeiiiiiiee e e eeeee e e e e e e e ee e e e e e eeeenees 8
Guidance summary for AdventureWorks SNOPPET ...c.uueiiiiieeeeeeee e 9
Yo o LT o TSP USSRt 9
Y] T Y= VAo [T K o o 9
Designing the AdventureWorks Shopper USer @XPEriENCE.cuuvuuieeeeeeeeeeiiiiieeeeeeeeeiiieeeeeeeeeeens 11
Using the Model-View-ViewModel (MVVM) pattern in AdventureWorks Shopper...................... 11
Creating and navigating between pages in AdventureWorks Shopper.........cccevvvviiiceiieeeeeeeeninnnnn. 12
Using touchin AdventureWorks ShOPPETooviii e 13
Validating user inputin AdventureWorks SNOPPET........uvueeiiii i i 13
Managing application datain AdventureWorks SHOPPEr.......covvveiiiiiiiiii i 14
Handling suspend, resume, and activation in AdventureWorks Shoppercccoevveeevieviiiiiiieneenns 14
Communicating between loosely coupled components in AdventureWorks Shopper.................. 15
Working with tiles in AdventureWorks SNOPPE.......ceeeiiiieiiiicciie e e e e 16
Implementing search in AdventureWorks SHOPPETceiviiiii i 17
Improving performance in Adventure Works SHOPPETuueuiee e 18
Testing and deploying AdventureWorks SHOPPET......ccuuuiiiiiiiie e 18
Using Prism for the WINdOowWs RUNTIMEuuuii e 19
YOU Wl IEAIN ...ttt eebeeeb e beaeebebnenenenenne 19
Y oL LT o 19

LGy [Ty = o o =T [20

(O =TT oY== VAT N 22
Creating @ VIEW MOTE] ClasS.......cciiiieeiiiiiee e e e e e e e e e et e e e e e e eeaaaa s 22
Creating a model class with validation SUPPOIt.........cooiiiiiiiiii e 23
Creating a Flyout and showingit programmatically...........cccoeeeeiiiiiiiiiiiiie e, 23
Adding items to the SETHNGS PANE......couui i i 24
Changing the convention for naming and locating VIEWS ... 25
Changing the convention for naming, locating, and associating view models with views............. 25

Registering a view model factory with views instead of using a dependency injection container.. 26

Designing the AdventureWorks Shopper USer @XPEri€NCEceeiiviiiieeiiiiiee e 27
YOU WL IBAIN ...ttt ettt ettt et et ettt et e eebbbteeatatnbabbbnbnsnnnnes 27
F N o] o) 11130 o TP 27
MaAKING KEY ECISIONS ..vuuuiieeieiiiiiiiie e e e e e et e e e e e e e ettt e e e e e e e e ettt e e e eeeseessstaaaaeeeeeseasssnnaeaaaeeennes 27
AdventureWorks ShOpPEr USEI EXPEIHENCESccuuieeiiiiieeeeiiiee e et iee e e et e e et e e e e et e e e e eteeaaeaaannas 28

Deciding the USer eXperience B0alS......coovviieieieieiiie e 28
Deciding the @PP FlOW.....ee e e e et e e et e e e e et e e e aa e aeas 29
Decidingwhat Windows 8 featureS tO USE ...cocevveiiviiiiiiiiiii e 31
FUNDAMENTAIS ... 32
Yo do o LY 1= o RPN 32
Y gE o] o N T=d-Ta Lo IXYor: | [T o V=S 32
TOUCH INTEIACION ..o 33
(0T o =] o 11 L1 4 L= 33
Tiles and NOLIfiCatioNS......coeeeeeee e 33
D) - PP PP PUPPTPPTN 34
Deciding how t0 MONetize the @PP .. ccieiiei i e e et e e e et eaens 34
Making @ g00d firStiMPreSSIONceiiiiiiiiii e e e e e e e e e ettt e e e e e e e ees bt e e eeaaeeeens 34
Validating the AESIEN .. oo et e e e e et e e e et e e e ra s 34

Using the Model-View-ViewModel (MVVM) pattern in AdventureWorks Shopperccevvvvneeen. 35
YOU Wl IBAIN ...ttt ettt ettt et et ee et bbbbbbebabebbbbeebnseanee 35
1Yo o LT o TP 35
Y] N Y=g e VAo [T £ o o Ut 35
MVVM in AdventureWorks SNOPPEEiiiiiii ettt e ettt e e et e e e e e e e e e et e e e e aaaeeaees 39
WAt IS IMVVIMIZ. Lottt ettt e e e e e s ettt et e e e e e e s e abtbteeeaeaaeeesaannnereaeeaaens 40
Using a dependency injeCtion CONTAINETiiiiieiieiiiiiee e e ee et e e e e e e e ettt e e e e e e et e e e aeeeeaees 40

Bootstrapping an MVVM app using the MvwmAppPBase Class.......cccevvvuiiiiiiiiiieiiiiceeeece e, 41

Using the ViewModelLocator class to connect view models to VIEWSceeevviiiiiiiiiiiieeiiieeee, 43
Using a convention-based approach ... e iieeiiiiiie e e eeans 44
Other approaches to connect view models to VIEWS..........coeiviiiiiiiiiiiii e, 44
Creating a view model declarativelyuuuoiiiiii i e 44
Creating a view model programmaticallyoooiiiiiiiiiii e 45
Creating a view defined as adata template.........ccoeeeiiiiiiiiii e 45
Data binding with the BindableBase Class...........uciiiiiiiii i e e et e 46
Additional CONSIAEIAtioNSccoiiuieiiiiiiiiee et e e e ree e e e e e e 47
Ul interaction using the DelegateCommand class and attached behaviors..........ccccccuveeiieiinnnnneen. 48
Implementing command ObJECESceeviviiiiiiiiiei 48
INvoking commands fromM @ VIEWciiiiiiiicc et e e e et e e e eaae e e 49
Implementing behaviors to supplement the functionality of XAML elements........c.ccccceeveeenenn. 50
INVoking behaviors from @ VIEWccoiiiiiiii e e e et eeeaae e 51
Additional CoNSTABIATIONS. ...iiiiiiiiiiiiiiiie ettt a bbbt e bbb e tbbebebereeaaaaaaa 52
Centralize data conversions in the view model or a conversion layer.......c.ccccevvvieeeiiiiiieeeeennn... 52
Expose operational modes in the view model ..., 52
Keep views and view modelsindependent...........c.uiiiiiiiiiiiiiiiii i 52
Use asynchronous programming techniques to keep the Ul responsive.......ccccoeeevvveeeieinnnnnnen. 53
Creating and navigating between pages in Adventure Works Shopperccoeeveviiiiiiiiiiiieeeiiiieeeees 54
YOU Wl IBAIN ..ttt ettt ettt ettt ettt ettt eaea et sbesbbebasebabbbbbnsnnnnes 54
FAY o] o] 11130 1 o F USSR 54
MaKIiNG KEY AECISIONScceviiieeiiie e ettt e ettt e e ettt e e e et be e e eeateeeeeataeeessatnseeessanaaaees 54
Creating pages and navigating between them in AdventureWorks Shoppercccoceevivviieieennnnn.. 58
(O =T A Y= o - =L 58
Adding design time data........ooiiiiiii i 60
Supporting portrait, snap, and fill aYOULS..........coouuiiiiiiii e 61
Loading the hub page at rUNTIMEuuiiii e et eeraa e e 61
Y Y [T a T lo T a1 (o] PP 63
OVerriding BUIIt-IN CONTIOIS.uuiiie et e et e e e e e e e ee e e e e e e e eeeatabaeeeeeeseanes 63
Enabling page [0Calizationo oot eraa e aees 65
Separate resources for aCh 10CalEoovviiiiiiii e 65
Ensure thateach piece of text that appearsin the Ul is defined by a string resource................ 66
Add contextual comments to the app resource file.........coovviiiiiiiiiiiiiiiccc e, 66

Define the flow directionforall PAgESoovviiiiii e 66

Vi

Ensure error messages are read from the resourcefilecccoeeeviiiiiiiiiii i 66
Enabling page acCessibilityouuuuuiiiiieeieeeeeie e e e e e e e et eeaaaaa 67
NaVigating DEIWEEN PAEES. .. ciiiie ettt e e e et ce e e ettt ee e e e eteeeeeateeeesateeeesstaaasestnaaaees 68

Handling Navigation r@QUESTS..........iviiiiiiiiie e e e e e e e e ettt e e e e e e e e e eeabaaaeeeeaaeeeens 70

INVOKING NAVIZALION .. .oeiii et e e et e e e et e e e e et e e e eateeeeasanaaaees 71

Using touch in AdventureWorks SHOPPEE ... e e e e e e e e e e 74
YOU Wl IBAIN ...ttt aee et btbebeetatebebbebeneeenee 74
FAY o] o LT o TSP 74
MaKIiNG KEY AECISIONS ... cceiiiieeiiie ettt ettt e e ettt e e e et e e e e tbe e e e eateeeesataeeesatnseaestnnaaanes 74
Touch in AdventureWOorks SHOPPET......ciiiiiiiiiiiiiiiiiiie ettt eeeeeesbaebeaeaeebabeberereaane 76
BT o R ol o] a1 aat- 1o A [t 1] o OSSP 76
Y T L3R o 3 o - [SR 79
Swipe to select, command, aNd MOVEcoouuiiiiiii e e e 81
Pinch and STretCh 10 ZOOM. ... uiiiiiiiiiiiie e e e e e e e as 84
Swipe from edge for app CoOmMMaANAS........oiiiiiiiii e e 86
Swipe from edge for system CoOmMMaANSooeviiiiiiiiiiiiii 89

Validating user inputin AdventureWorks ShOPPErcoviviiiiiiiiie e 90
YOU Wl IBAIN ...ttt ettt ettt ettt ettt et et et eeebbeebbebabebabebebebnennes 90
FAY o] o) 11130 o FO P 90
MaKiNG KEY AECISIONS ...ttt e e e e e e e e e e e s 90
Validationin AdventureWorks SHOPPET......c.u i 91
SPedfying Validation FUIEScoevie e et e e e e e et e e e s 92
Triggering validation when properties Changecoovuei i e 95
Triggering validation of all PropPertiEs......cceeeui it 97
Triggering server-side ValidatioNcuu i 98
Highlighting validation errors with attached behaviors............ccccooiiiiii i 99
Persisting user input and validation errors when the app suspends and resumes.............cc........ 101

Managing application datain AdventureWorks ShOPPErccovvveeiiiiiiii e, 104
YOU WIlTIBAIN ettt e e e e et e e e e e s e e bbbt ee e e e e e e s eannbbeneeas 104
F AN o] o) 1113 o TR 104
MaKiNg KEY ECISIONS ... ciiiiiiieiiie ettt e et e e e et e e e et e e e eat e e e ettaeeeeatneeeentanaaaes 104
Managing application datain AdventureWorks SHOPPEIccoveiuiiieiiiiieieeece e 107
Storing data in the apP data STOMESuvvuuiii e e e e e e et e e e e e e eeeaaeas 107

Local application data........cceuuuiiiiie et r e e 108

vii

Roaming application data........ccooiiiiii it 108
Storing and roaming User credentials............uueeeeiiiiiieiiiiie e 109
Temporary application data.........coueiiiiiiii e 111
Exposing settings through the Settings charm.............ciiiii i 111
Using model classes as data transfer 0bjectscooviiiei i 114
Accessing data through @ WED SEIVICEccvviiiiiiiie e 115
(000 0118 91 o 1o o 1S 116
g o To I o= e 11 = T UUUPPPN 116
D1 (o] 400 I £ T T T U P U U U PP PP OU PP PP PPPPPPPPPP 117
(0o T 1 V0o 10 = -1 = 117
(0rTol o 11a¥ =3 -1 - 121
AULNENEICALION 1.t e e e s e e e e e e e s reeeeeeeeas 122
Handling suspend, resume, and activation in AdventureWorks Shopperccccooeiiiiiiiiiiiiiieeennnnnn. 127
YOU Wl IBAIN ..ttt ettt ettt ettt bttt bt e e teeebeeeeeeeneee 127
F AN o] o) 11130 o TR 127
MaKiNG KEY AECISIONSvvvveieiiiiiiiiiiiiiitiitiettt bbb e 127
Suspend and resume in AdventureWorks SHOPPET........uuieiiiiiiie i 128
Understanding possible eXeCUtion STtates........civiiiiiieiiiiiii e e e e eeees 129
Implementation approaches for suspend and reSUME..........ccceeviviiieiiiiieieiiice e 131
SUSPENAING @N PPttt e aaaaaaas 132
T U a1 0T oA 1T o o OIS 135
Yo AV L g == T 4 I o o 136
Other ways t0 CloSE the AP P ..cuueieiiiiie e e e e et e e e et e e e e et e e e eaaaeeeeaan 138
Communicating between loosely coupled components in AdventureWorks Shopper 140
YOU Wl IEAIN ..ottt eeeeeeeeneees 140
F AN o] o) 1113 o T U 140
MaKiNg KEY DECISIONSciviiiiieiiie e et e e et e e e et e e e et e e e sat e eeeataeesestn e eeatanaaaes 140
Event aggregation in AdventureWorks SHOPPETcocuui i 141
VLYo L Tod o (<Y = | (o] o A ORI 142
Defining and publishing PuUb/SUD @VENTS........uvuuieiiiiiiiii e 143
DEFINING AN BVENT ...ttt e e e e et e e e e e e e e ettt e e e eeeeeeasataan e eeeeesesssaans 143
PUDBLISHING @N EVENT ... e et e e e ettt e e e et e e e e et e e e et aaes 143
Y] o 1Yol g1 oY o= o A VZ=Y o £ 144

Default SUDSCIIPLION . .coeee e e et e e e et e e e e et e e e eabe e eeaaanaaaes 144

viii

Subscribing onthe UL Thread..........ooouiiiii e e e s 144
Y] o el gl o 4o o Il 1 =Y 11 V=P 145
Subscribing USiNg STrONG rETEIENCES. ... cieeiii e e 146
Unsubscribing from pub/sub @VENTS.........uuuuuiiiiiiiiiiiiiiiiii e 147
Working with tiles in AdventureWorks SNOPPETcooviei i 148
NIV |1 N =Y T DO PP PPPPPPPPPPPPPPPPPRE 148
FiN o] o) 1113 o TSRS 148
MaAKING KEY ECISIONS ...uuuiieeieiiiiiiiie e e e e e e eeeeeie e e e e e ettt ere e e e e e e e e et e e e e eeeeeesssbaaeeeeeeessssranaaaeaasenns 148
Tiles in AdventUreWOrks SNOPPETccuu it e e et e e et e e e e et e e e e eaaans 149
CrEating APP LIS e 150
Using periodic notifications to update tile contentccooooviiiiiiii i 151
Creating SECONUANY tHlES ..evuiie et e e e e et e e e e e e e eeatba e e e e e aaaanaaan 152
Launching the appfrom a secondary tile.........ccoooviiiiiiiiiiii e 156
Implementing search in AdventureWorks SROPPETcooeeeiieiiiiiciie e 157
YOU Wl IBAIN ...ttt ettt e e eeeeeeeeeeees 157
FiY o] o 1113 o DO PP PPPPPPPPPPPPPPPPPPPRt 157
MaKiNg KEY AECISIONS ... cieviiieiiiie e et e ettt e e e et e e e et eeeeat e eeettaeeeeatn e eeatanaaaes 157
Search in AdventUreWOrKS SNOPPETuu e e e e e e e e e e e eeeenenas 158
Participating in the SEarch CONTIaCt.........oouuiiiiiiii e eraa e 159
ResSponding to SEArCh QUEIIES . .ceeeeeeeeeee e 160
Populating the search results page with data.........cccoooiiiiiiiiin e, 162
Navigating to the result's detail PAge.......ccoovvieiii i 163
Enabling users to type into the search boX.........coouuiiiiiiiiii i 164
Improving performance in AdventureWorks SNOPPErceeiiiiiieiiicee e 166
YOU Wl IEAIN ..ottt eeeeeeeeneees 166
F AN o] o) 1113 o T U 166
MaKiNG KEY DECISIONS ... ciiiiiiiiiiie e et e et e e e et e e e et e e e eat e e e eataeeseatn e eentanaaaes 166
PerfOrmance CONSIAEIAtIONS.uu i uieieietiteitititteee et s 168
Limit the StartUp TimMe.....coiiiiiie et e e e e et e e e e e e eeesabaaeeeeeeseesaeaas 168
EMPNasiZe M@ SPONSIVENESS.uuiiiiiiieeee et e e et e ettt e e et ee e e ettt e e e e stteessttaeeessstansaesssneaesssnnaans 169
Trim resource diCtioNari@s ...coee e 169
Optimize the elemMeNT COUNTe i e e e e e e e eaaaes 169
Reuse identical BrUuSREScoii i e e 169

Use independent animationsooieiiiiiii i e e 169

Minimize the communication between the app and the web service..........ccoeeeiiiiiiiiniinnns 170
Limit the amount of data downloaded from the web servicecccccovviiiiiiiiiiiiniiie, 170

Use UL VIrtUaliZationooeeeeeee e 170
Avoid UNNecessary terMINAtION.........ciiiiiiie e e e e e e e e e e e e e e eaaaas 171
Keep your app's memory usage low when it's suspended..........cooevueiiiiiiiiiiiiiiii e, 171
Reduce battery CONSUMPLIONcoiiiiiiiiie e e e et e e e e e e e e e e e e e eseeaeenen 172
Minimize the amount of resources that your app USES........cceuuiiiiiiiiiiiiiiiiee e 172
Limit the time spent in transition between managed and native codeccccceeeeeeeeeeennnnnn. 172
Reduce garbage collection timMe........coeeiiiiiiiic e 172
Additional CoNSTARIATIONS....ciiiiiiiiiiiiieiee ettt reraae 173
Testing and deploying Adventure Works SROPPETuueiieiiiieeeeee e 174
TV R 11 L= T o DO PP PPPPPPTPPPI 174

F AN o] o) 11130 o TR 174
MaKiNG KEY AECISIONSvvvviiiiiiiiiiiiiiiieieiet ettt s 174
Testing AdventureWorks SNOPPET.....ccuue it 175
UNit and iNtEGration tEStING. .. .uuuuueiieeiiiiiiiiiiiiii it s 176
Testing synchronous fuNCtionalityoeiiiiiiiiiiii e 177
Testing asynchronous fuNCtioNalitycooeeeiiieeiiiiii e 178
Suspend and rESUME tEStING.iviiiiei e e e e e e et e e e et e e e et e e aeanaas 179
Yol 0L 4V (= o oY= PRSP 179
(Moo 1 b= 1Ko g I =Ty 11 o= PNt 179

YN oo E 3] o | Y (<1 1] V-SSR 180
Yt ZoT g g T (oI (=T {1 Nt 180
DY ol I (=)] ¥ - 180
Testing your app with the Windows App Certification Kit..........coovviiiiiieiiiiiiiiiiiiiee e, 181
Creating a Windows Store certification checklist............cooiiiiiiiiiiiii e, 182
Deploying and managing WindOWS StOre @pPS......ciieuiuieieiiiieeeiieee et e ee et e eeerieeeerateeesareeaens 182
Meet the AdventureWorks SNOPPErtEAMuuiiiiiiii it aaens 183
MEEE thE tEAM ..t e e e ettt e e e e e s st ee e e e e e e e saaanes 183
Quickstarts for AdventureWorks SHOPPETue it e eeeaa e 185
Validation Quickstart for Windows Store apps using the MVVM pattern...........ccevvvvvveieeeeeeeeeennne. 186
YOU Wl IBAIN ...ttt eeeeeeeeeeeees 186

F Yo o LT o TSR 186

Building and running the QUICKStArt............i i 186

SOIULTON SEIUCTUIE .. 187
Key dasses in the QUICKSTAIT..........ciiiie i e e et e e e e e e e e e aat e e eeeaees 188
Spedfying Validation FUIEScoeii e e e et e e et e e e 189
Triggering validation eXPliCitlycovvueeiiie e e e e e e e e 190
Triggering validation implicitly on property change.......cccoovviiiiiiii e, 191
Highlighting Validation EIOrS. eieiiiiiiiiiiieiiii it 191
Event aggregation Quickstart for Windows StOre apps......cceeeviueeeiiiiiiieeeiie et 194
YOU WIlTIBAIN ettt e e e e st e e e e s e st e e e e e e e s eannbreneeas 194
F AN o] o) 11130 o TR 194
Building and running the QUICKSEAIuuuuuuuiiiiiiiiiiiiie s 195
SOIULION SEIUCTUIE .. e e e 196
Key dasses in the QUICKSTAIT...........iiii e i e e e et e e e e e e e eaat e e eeeeees 196
Defining the ShoppingCartChangedEVENt Classccouvuiiiiiiiiii e e 197
Notifying subscribers of the ShoppingCartChangedEVENtuuuuiuiiiiiiiie 198
Registering to receive notifications of the ShoppingCartChangedEvent...........cccccoeeviiiiiiiennnn. 199

Bootstrapping an MVVM Windows Store app Quickstart using Prism for the Windows Runtime201

YOU Wl IEAIN ..ttt ettt ettt eeeeeeeeenes 201
Y o L= oo SR 201
Building and running the QUICKStart............iiiiiiiii e 201
SOIULTON SEIUCTUIE .. 202
Key dasses in the QUICKSTArt..........oiviui i e e et e e e e e e e e era e ees 203
Bootstrapping an MVVM app using the MvwmApPpPBase class.......cccoevvueeiiiiiiiiiiiiiieeeeiee e 203
Adding app specific startup behavior to the App class......cceuveiiiiiiiiiiiiiiieece e, 204
Bootstrapping without a dependencyinjection container..........cceeeiiiiiiiiiiiii e 207
Prism for the Windows RUNtime referenceeeeeiiiiiiiiiee e 208
YOU Wl IBAIN. ..ttt ettt ettt ettt e e e eeeeeeeeeees 208
F AN o] o] 11130 o F U 208
Microsoft.Practices.Prism.StoreApps library ... 209

Microsoft.Practices.Prism.PUubSUbEvVeNts lIbraryccooeeiiiiiiiiiiii e, 211

Developing a business app for the Windows Store using C#:
AdventureWorks Shopper

This guide provides guidanceto developers who want to create a Windows Store business app using
C#, Extensible Application Markup Language (XAML), the Windows Runtime, and modern
development practices. The guide comes with source code for Prism forthe Windows Runtime,
source code for the AdventureWorks Shopper product catalog and shopping cart reference
implementation, and documentation. The guide provides guidance on how toimplement MVVM
with navigation and app lifecycle management, validation, manage application data, implement
controls, accessible and localizable pages, touch, search, tiles, and tile notifications. It also provides
guidance ontestingyourapp and tuningits performance.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

Download Prism PubSubEvents library

Afteryou downloadthe code, see Getting started with AdventureWorks Shopper forinstructions on
how to compile and run the reference implementation, as well as understand the Microsoft Visual

Studio solution structure.
Here'swhat you'll learn:

¢ How toimplementpages, controls, touch, navigation, settings, suspend/resume, search,
tiles, and tile notifications.

¢ How to implementthe Model-View-ViewModel (MVVM) pattern.

e How to validate userinputforcorrectness.

e How to manage application data.

e How to testyourapp and tune its performance.

Note If you're just getting started with Windows Store apps, read Create yourfirst Windows Store
app using C# or Visual Basicto learn how to create a simple Windows Store app with C#and XAML.
Then download the AdventureWorks Shopperreference implementation to see acomplete business
app that demonstrates recommended implementation patterns.

Prerequisites

e Windows8
¢ MicrosoftVisual Studio 2012
e Aninterestin C#and XAML programming

http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://go.microsoft.com/fwlink/p/?LinkID=389062
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/?LinkID=296753

Go to Windows Store app development to download the latest tools for Windows Store app
development.

The AdventureWorks Shopper Visual Studio solution has anumber of nuget package dependencies,
which Visual Studio will attempt to download when the solutionisfirstloaded. The required nuge t
packagesare:

e Unityv3.0

e Microsoft.AspNet.WebApi.Client v4.1.0-alpha-120809
¢ Newtonsoft.Jsonv4.5.11

e Microsoft.AspNet.Mvcv4.0.20710.0

e Microsoft.AspNet.Razorv2.0.20715.0

e Microsoft.AspNet.WebApiv4.0.20710.0

e Microsoft.AspNet.WebApi.Client v4.1.0-alpha-120809
e Microsoft.AspNet.WebApi.Core v4.0.20710.0

e Microsoft.AspNet.WebApi.WebHost v4.0.20710.0

e Microsoft.AspNet.WebPagesv2.0.20710.0

e Microsoft.Net.Http v2.0.20710.0

e Microsoft.Web.Infrastructurev1.0.0.0

Table of contents at a glance

Here are the major topicsinthisguide. Forthe full table of contents, see AdventureWorks Shopper
table of contents.

e Gettingstarted with AdventureWorks Shopper
e Guidance summary for AdventureWorks Shopper
e Using Prismfor the Windows Runtime

e Designingthe AdventureWorks Shopper userexperience

e Usingthe Model-View-ViewModel (MVVM) patternin AdventureWorks Shopper
e Creatingand navigating between pagesin AdventureWorks Shopper

e Usingtouch in AdventureWorks Shopper

e Validatinguserinputin AdventureWorks Shopper

e Managing application datain AdventureWorks Shopper

e Handlingsuspend, resume, and activationin AdventureWorks Shopper

e Communicating between looselycoupled componentsin AdventureWorks Shopper
e Workingwithtilesin AdventureWorks Shopper

e |Implementingsearchin AdventureWorks Shopper

e Improving performance in AdventureWorks Shopper

e Testingand deploying AdventureWorks Shopper

e Meetthe AdventureWorks Shopperteam

e Quickstarts for AdventureWorks Shopper

e Prismforthe Windows Runtime reference

http://msdn.microsoft.com/en-us/library/windows/apps/br229519.aspx

Note Thiscontentisavailable onthe webas well. Formore info, see Developing a business app for
the Windows Store using C#: AdventureWorks Shopper.

Learning resources

If you're new to C# programming for Windows Store apps, read Roadmap for Windows Store app
using C# or Visual Basic. To find out about debugging Windows Store apps see Debugging Windows

Store apps.

If you're familiar with using XAMLyou'll be able to continue using your skills when you create
Windows Store apps. Formore infoabout XAML as itrelates to Windows Store apps, see XAML
overview.

The Windows Runtime is aprogramminginterface that you can use to create Windows Store apps.
The Windows Runtime supports the distinctive visual style and touch-based interaction model of
Windows Store apps as well as access to network, disks, devices, and printing. For more info about
the Windows Runtime API, see Windows API reference for Windows Store apps.

The .NET framework provides a subset of managed types that you can use to create Windows Store
apps using C#. This subset of managed typesis called .NET for Windows Store apps and enables .NET
framework developers to create Windows Store apps within afamiliar programming framework. You
use these managed types with types from the Windows Runtime APl to create Windows Store apps.
You won't notice any differences between usingthe managed types and the Windows Runtime types
exceptthatthe managedtypesreside in namespacesthatstart with System, and the Windows
Runtime typesresidein namespaces that start with Windows. The entire set of assemblies for .NET
for Windows Store appsis automatically referenced in your project whenyou create a Windows
Store app using C#. For more info see .NET for Windows Store apps overview.

To learn about the components and tools that determine what platform capabilities are available to
your app, and how to access these capabilities see App capability declarations (Windows Store

3995!.

The AdventureWorks Shopper referenceimplementation makes much use of the task-based
asynchronous pattern (TAP). Tolearn how to use TAP to implement and consume asynchronous
operations see Task-based Asynchronous Pattern.

You might also want toread Index of UX guidelines for Windows Store apps and Blend for Visual
Studiotolearn more about how to implement a great userexperience.

http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://go.microsoft.com/fwlink/?LinkID=276827
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx

S

Getting started with AdventureWorks Shopper (Windows Store
business apps using C#,XAML, and Prism)

In this article we explain how to build and run the AdventureWorks Shopper reference
implementation, and how the source code is organized. The reference implementation
demonstrates how to create a Windows Store business app by using Prism for the Windows Runtime

to accelerate development.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

Download Prism PubSubEvents library

Building and running the sample

Build the AdventureWorks Shopper Microsoft Visual Studio solution as you would build astandard
solution.

1. On theVisual Studio menu bar, choose Build > Build Solution.

2. Afteryoubuildthe solution, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. Afteryoudeploythe project, youshould runit. Onthe menu bar, choose Debug > Start
Debugging. Make sure that AdventureWorks.Shopperis the startup project. Whenyou run
the app, the hub page appears.

http://go.microsoft.com/fwlink/p/?LinkID=389062
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/?LinkID=296753

ADVENTURE
WORKS

$539.99

Road-750 Black, 52 HL Mountain Frame

Entry bevel adult biioe; offers a.. Exch frame is hand-crafte

7
\

$577.12 $229.49 $44.54

Mountain-400-W Red, 42 HL Fork LL Mountain Handle

Thiz bik: vers a high-level of performance on a budget. It i responsive and. High-performance carbon road fork.. Mll-purpase bar for onor

Projects and solution folders

The AdventureWorks Shopper Visual Studio solution organizes the source code and otherresources
into projects. All of the projects use Visual Studio solution folders to organize the source code and
otherresourcesinto categories. The following table outlines the projects that make up the
AdventureWorks Shopper reference implementation.

Project Description

AdventureWorks.Shopper This projectcontains the views for the AdventureWorks
Shopper reference implementation, the package manifest,
and the App class thatdefines the startup behavior of the
app, along with supporting classes and resources. For
more info see The AdventureWorks.Shopper project.

AdventureWorks.UlLogic This projectcontains the businesslogic for the
AdventureWorks Shopperreference implementation, and
comprisesview models, models, repositories, and service
classes. Formore info see The AdventureWorks.UlLogic

project.
AdventureWorks.WebServices This projectcontains the web service for the

AdventureWorks Shopper reference implementation. For
more info see The AdventureWorks.WebServices project.

Microsoft.Practices.Prism.PubSubEvents

This projectcontains classes thatimplementthe event
aggregator. For more info see The
Microsoft.Practices.Prism.PubSubEvents project.

Microsoft.Practices.Prism.StoreApps

AdventureWorks.Shopper.Tests

AdventureWorks.UlLogic.Tests

AdventureWorks.WebServices.Tests

Microsoft.Practices.Prism.PubSubEvents.Tests

Microsoft.Practices.Prism.StoreApps.Tests

This projectcontains interfaces and classes thatprovide
MVVM supportwith lifecycle management, and core
services to the AdventureWorks Shopper reference
implementation. Formore info see The
Microsoft.Practices.Prism.Store Apps project.

This projectcontains unittests for the
AdventureWorks.Shopper project.

This projectcontains unittests for the
AdventureWorks.UILogic project.

This projectcontains unittests for the
AdventureWorks.WebServices project.

This projectcontains unittests for the
Microsoft.Practices.Prism.PubSubEvents project.

This projectcontains unittests for the
Microsoft.Practices.Prism.StoreApps project.

You can reuse some of the componentsinthe AdventureWorks Shopperreference implementation
inany Windows Store app with little or no modification. Foryourown app, you can adaptthe

organization and ideas thatthese files provide.

The AdventureWorks.Shopper project

The AdventureWorks.Shopper project contains the following folders:

e The Assets folder containsimages forthe splash screen, tile, and other Windows Store app

requiredimages.

e TheBehaviors folder contains attached behaviors that are exposed to view classes.

e The Common folder contains the DependencyPropertyChangedHelper class which monitors

adependency property forchanges, and standard styles used by the app.
e The Controls folder contains the FormFieldTextBox and MultipleSizedGridView controls.
e The Convertersfoldercontains data converters such as the BooleanToVisibilityConverter

and the NullToVisibleConverter.

e The DesignViewModels folder contains design-time view model classes that are used to
display sample datainthe visual designer.

e The Servicesfoldercontainsthe AlertMessageService and SecondaryTileService classes.

e The Strings folder contains resource strings used by this project, with subfolders foreach

supportedlocale.

e The Themes folder contains the application styles used by the app.

e The Viewsfoldercontainsthe pagesand Flyoutsforthe app. The app uses a default
convention that attemptstolocate pagesinthe "Views" namespace.

The AdventureWorks.UILogic project

The AdventureWorks.UlLogic project contains the model, repository, service, and view model
classes. Placing the model and view model classes into a separate assembly provides asimple
mechanism forensuring that view models are independent from their corresponding views.

The AdventureWorks.UlLogic project contains the following folders:

e The Modelsfoldercontainsthe entities that are used by view model classes.

e The Repositoriesfolder contains repository classesthat access the web service.

e The Servicesfoldercontainsinterfaces and classes thatimplementservices thatare
providedto the app, such as the AccountService and TemporaryFolderCacheService classes.

e The Strings folder contains resource strings used by this project, with subfolders foreach
supported locale.

¢ The ViewModels folder containsthe application logicthatis exposed to XAML controls.
When a view classisassociated with a view model class adefault convention isused which
will attempt to locate the view model classin the "ViewModels" namespace.

The AdventureWorks.WebServices project

The AdventureWorks.WebServices projectisasample web service that uses anin-memory database
to provide datato the Adventure Works Shopperreference implementation. When the reference
implementationis deployed through Visual Studio this web service is deployed locally on the
ASP.NET developmentserver.

The AdventureWorks.WebServices project contains the following folders:

e The App_Start folder contains the configuration logicforthe web service.

e The Controllers folder containsthe controller classes used by the web service.

e Thelmages foldercontains productimages.

e The Modelsfoldercontainsthe entities thatare used by the web service. These entities
containthe same properties as the entitiesinthe AdventureWorks.UlLogic project, with
some containing additional validation logic.

e The Repositoriesfoldercontainsthe repository classes thatimplement the in-memory
database used by the web service.

e The Strings folder contains aresource file containing strings used by the web service.

e TheViewsfoldercontainsthe Web.config settings and configuration file forthe web service.
It does not contain views because it uses the ASP.NET Web API, which returns data rather
than displaysviews.

Note The AdventureWorks.WebServices project does not provide guidance forbuildingaweb
service.

The Microsoft.Practices.Prism.PubSubEvents project

The Microsoft.Practices.Prism.PubSubEvents projectis a Portable Class Library that contains classes
that implement event aggregation. You can use this library forcommunicating between loosely
coupled componentsinyourown app. The project has no dependencies on any other projects. For
more infoaboutthislibrary, see Prism forthe Windows Runtime reference.

The Microsoft.Practices.Prism.StoreApps project

This project contains the reusable infrastructure of the AdventureWorks Shopper reference
implementation, which you can use for building your own Windows Store app. It contains classes to
build Windows Store apps that support MVVM, navigation, state management, validation, Flyouts,
and commands.

The Microsoft.Practices.Prism.StoreApps project uses Visual Studio solution folders to organize the
source code and otherresourcesintothese categories:

¢ TheInterfaces folder contains the interfaces thatare implemented by classesin this project.
e The Strings folder contains resource strings used by this project, with subfolders foreach
supportedlocale.

For more info aboutthislibrary, see Prism forthe Windows Runtime reference.

Guidance summary for AdventureWorks Shopper (Windows Store
business apps using C#,XAML, and Prism)

Business apps create a unique set of challenges fordevelopers. Inthis article read about the key
decisions you will have to make when developing a Windows Store business app. In addition, you
can consult the checklists that provide a consolidated view of the guidance included with the
documentation andillustrated in the AdventureWorks Shopper referenceimplementation.

Applies to

¢ WindowsRuntime for Windows 8
o CH
e Extensible Application Markup Language (XAML)

Making key decisions

This guidance providesinformation to developers who want to create a Windows Store app using
C#, XAML, the Windows Runtime, and modern development practices. When you develop anew
Windows Store app, you need to determine some key factors that will definethe architecture of
your app. The following are many of the key decisions that you will need to make:

e Decide on the design of the end user experience . When planning Windows Store apps, you
should think more about what experience you want to provide toyourusersand less about
what Windows 8 features you wantto include. Formore info see Desighing the user
experience.

e Decide whetherto use a dependencyinjection container. Dependency injection containers
reduce the dependency coupling between objects by providing afacility to construct
instances of classes with their dependencies injected, and manage theirlifetime based on
the configuration of the container. You will need to decide whetherto use a dependency
injection container, which containerto use, and how to registerthe lifetime of components.

For more info see Usingthe Model-View-ViewModel pattern.

e Decide whetherto provide a clean separation of concerns between the userinterface
controls and their logic. One of the mostimportant decisions when creatinga Windows
Store app iswhetherto place businesslogicin code-behind files, orwhethertocreate a
cleanseparation of concerns between the userinterface controls and theirlogic, in orderto

make the app more maintainable and testable. If you decide to provide aclean separation of
concerns, there are then many decisions to be made about how to do this. For more info see
Usingthe Model-View-ViewModel pattern.

e Decide how to create pages and navigate betweenthem. There are many decisionsto be
made about page designincluding the page layout, what content should be displayedin

different page views, whethertoinclude design time dataonyour pages, and whetherto
make pages localizable and accessible. In addition, you must also make decisions about page
navigationincluding how to invoke navigation, and where navigation logicshould reside. For
more infosee Creating and navigating between pages.

10

Choose the touch interactions that the app will support. This includes selecting the
gesturesfromthe Windows 8 touch language that your app requires, and whetherto design
and implement your own custom touch interactions. For more info see Using touch.

Decide how to validate userinput for correctness. The decision mustinclude how to
validate userinputacross physical tiers, and how to notify the useraboutvalidation errors.
For more info see Validating userinput.

Decide how to manage application data. This should include deciding upon which of the
app data storesto use, what data to roam, deciding how to manage large data sets, how to
perform authentication between yourapp and a web service, and how to reliably retrieve
data froma web service. Formore info see Managing application data.

Decide how to manage the lifecycle of the app. The purpose and usage patterns of your app
must be carefully designed to ensure that users have the best possible experiencewhen an
app suspendsandresumes. Thisincludes deciding whetheryourapp needs to update the Ul
whenresumingfrom suspension, and whetherthe app should startfresh if a long period of
time has elapsedsince the userlastaccessedit. Formore info see Handling suspend,

resume, and activation.
Choose between platform provided eventing and loosely coupled eventing. Event
aggregation allows communication between loosely coupled componentsinanapp,

removingthe need forcomponentsto have areference to each other. If you decide to use
eventaggregation, you must decide how to subscribe to events and unsubscribe from them.
For more info see Communicating between loosely coupled components.

Decide how to create tiles that are engagingfor users. A tileisan app's representation on

the Start screenand allows you to presentrich and engaging contenttoyourusers whenthe
app isnot running. In orderto create engagingtiles you mustdecide ontheirshape andsize,
how to update tile content, and how often to update tile content. For more info see Working
withtiles.

Choose how to participate in search. To add search to yourapp you must participate in the
Search contract. When you add the Search contract, users can search yourapp from
anywhere in theirsystem by selecting the Search charm. However, there are still decisionsto
make that include whetherto provide query and result suggestions, filtering, and what to
display on the search results page. For more infosee Implementing search.

Considerhow to improve app performance. A well-performingapp should respond to user

actions quickly, with no noticeabledelay. In orderto deliverawell-performing app you will
needtodecide which toolsto use to measure performance,and where to optimize code. For
more infosee Improving performance.

Decide how to test and deploy the app. Windows Store apps should undergo various modes
of testinginorderto ensure thatreliable, high quality apps are deployed. Therefore, you will

needtodecide how totest yourapp, how to deployit, and how to manage it after
deployment. For more info see Testing and deploying Windows Store apps.

11

Designing the AdventureWorks Shopper user experience

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling userexperience. Planning ahead for different form factors, accessibility, monetization,
and sellinginthe global market can reduce yourdevelopmenttime and make it easierto create a
high quality app and get it certified.

Check Description
| Created a "great at" statementto guide user experience planning.
] Decided the user experiences to provide in the app.
] Followed the Index of UX guidelines for Windows Store apps forthe experiences the app provides.
| Storyboarded the different app flows to decide how the app behaves.
] Designed the app for different form factors.
[l Designed the app for all users regardless oftheir abilities, disabilities, or preferences.

For more info see Designingthe user experience.

Using the Model-View-ViewModel (MVVM) pattern in AdventureWorks
Shopper

MVVM providesaway fordevelopersto cleanly separate the userinterface controls fromtheirlogic.
This separation makesiteasyto testthe businesslogicof the app.

Check Description

] Used a dependencyinjection container to decouple concrete types from the code that depends on
those types, if appropriate.

Used view-firstcomposition because the app is conceptuallycomposed ofviews that connect to
the view models theydepend upon.

Limited view model instantiation to a single class byusing a view model locator object.

Used a convention-based approach for view model construction to remove the need for some
boilerplate code.

Used an attached property to automaticallyconnectviews to view models.

Promoted the testability of the app by exposing commands from the view models for ButtonBase-
derived controls on the views.

0O Ood O 0O

Promoted the testability of the app by exposing behaviors to views for non-ButtonBase-derived
controls.

] Supported a view model hierarchyin order to eliminate redundantcode in the view model classes.

For more infosee Usingthe MVVM pattern.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

12

Creating and navigating between pages in AdventureWorks Shopper

The app page is the focal pointfor designing your Ul. It holds all of your content and controls.

Whenever possible, you should integrate your Ul elementsinlineinto the app page. Presenting your
Ulinline lets users fullyimmerse themselves in yourapp and stay in context.

Check

Description

Ll

0o O o ooo o oo oOoodg O

O

Used Visual Studio to work with the code-focused aspects ofthe app.

Used Blend for Microsoft Visual Studio 2012 for Windows 8 or the Visual Studio designer to work
on the visual appearance ofthe app.

Provided flexible page layouts that supportlandscape, portrait, snap, and fill views.

Followed a consistentlayout pattern for margins, page headers, gutter widths, and other page
elements.

Maintained state in snap view and possess feature parityacross states.

Used the Windows simulator to test the app on a variety of screen sizes, orientations, and pixel
densities.

Added sample data to each page to easilyview styling results and layoutsizes, and to support
the designer-developer workflow.

Incorporated accessible design principlesinto the pages, and planned for them to be localized.
Placed navigation logicin view model classes to promote testability.

Used commandsto implementa navigation action in a view model class, for ButtonBase-derived
controls.

Used attached behaviors to implementa navigation action in a view model class, fornon-
ButtonBase-derived controls.

Used the top app bar for navigational elements thatmove the userto a different page and used
the bottom app bar for commands thatacton the current page.

Implemented common page navigation functionalityas a user control that is easilyincluded on
each page.

Used strings to specifynavigation targets.

For more info see Creatingand navigating between pages.

13

Using touch in AdventureWorks Shopper

Touch interactionsin Windows 8 use physical interactions to emulate the direct manipulation of Ul
elements and providea more natural, real-world experience when interacting with those elements
on the screen.

Check Description

[] Used the Windows 8 touch language to provide a concise setof touch interactions that are used
consistentlythroughoutthe system.

Used data binding to connect standard Windows controls to the view models thatimplement the
touch interaction behavior.

Ensured thattouch targets are large enough to supportdirectmanipulation.
Provided immediate visual feedback to touch interactions.
Ensured thatthe app is safe to explore by making touch interactions reversible.

Avoided timed touch interactions.

godooog o

Used static gestures to handle single-finger touch interactions.

[l Used manipulation gesturesto handle dynamic multi-touch interactions.

For more infosee Using touch.

Validating user input in AdventureWorks Shopper

Any app that acceptsinputfrom users should ensure that the data is valid. Validation has many uses
including enforcing business rules, providing responses to userinput, and preventing an attacker
frominjecting malicious data.

Check Description

|:| Performed client-side validation to provide immediate feedback to users, and server-side
validation to improve security and enforce business ruleson the server.

Performed synchronous validation to check the range, length, and structure of userinput.

Derived model classes from the ValidatableBindableBase classin order to participate in client-
side validation.

Specified validation rules for model properties byadding data annotation attributes to the
properties.

Used dependencyproperties and data binding to make validation errors visible to the userwhen
the properties ofthe model objects change.

Notified users aboutvalidation errors by highlighting the control that contains the invalid data,
and by displaying an errormessage thatinforms the userwhythe data is invalid.

0o o oo o O

Saved userinputand any validation error messages when the app suspends, so thatthe app
can resume as the user leftit following reactivation.

For more infosee Validating userinput.

14

Managing application data in AdventureWorks Shopper

Application datais datathat the app itself creates and manages. Itis specifictothe internal
functions or configuration of an app, and includes runtime state, user preferences, reference
content, and other settings.

Check Description

[] Used the application data APIs to work with application data, to make the system responsible
for managing the physical storage of data.

O Stored passwords in the Credential Locker only if the user has successfullysigned into the app,
and has opted to save passwords.

] Used ASP.NET Web API to create a resource-oriented web service thatcan pass different
content types.
] Cached web service data locally when accessing data thatrarely changes.

For more info see Managing application data.

Handling suspend, resume, and activation in AdventureWorks Shopper

Windows Store apps should be designed to suspend when the user switches away from themand
resume when the user switches backtothem.

Check Description
L] Saved application data when the app is being suspended.
U Saved the page state to memorywhen navigating away from a page.
L] Allowed views and view models to save and restore state that's relevant to each.
] Updated the Ul when the app resumesifthe content has changed.
] Usedthe saved application data to restore the app state, when the app resumes after being

terminated.

For more infosee Handling suspend, resume, and activation.

15

Communicating between loosely coupled components in AdventureWorks

Shopper

Eventaggregation allows communication between loosely coupled componentsinanapp, removing
the need forcomponentsto have a reference to each other.

Check

Description

0O o oo o 0o 0O 0O

Used Microsoft.NET events for communication between components thathave object reference
relationships.

Used event aggregation forcommunication between looselycoupled components.

Used the Microsoft.Practices.Prism.PubSubEvents libraryto communicate between loosely
coupled components.

Defined a pub/sub eventby creating an empty class thatderives from the
PubSubEvent<TPayload> class.

Notified subscribers byretrieving the event from the event aggregator and called its Publish
method.

Registered to receive notifications by using one ofthe Subscribe method overloads available in
the PubSubEvent<TPayload> class.

Requestthatnotification of the pub/sub eventwill occur in the Ul thread when needing to update
the Ul in response to the event.

Filtered required pub/sub events by specifying a delegate to be executed once when the event
is published, to determine whether or not to invoke the subscriber callback.

Used stronglyreferenced delegates when subscribing to a pub/sub event, where performance
problems have been observed.

For more info see Communicating between loosely coupled components.

16

Working with tiles in AdventureWorks Shopper

Tilesrepresentyourapp onthe Start screen and are used to launch your app. They have the ability
to display acontinuously changing set of content that can be used to keep users aware of events
associated with yourapp whenit's not running.

Check

Description

[

Ood oo O

[

Used live tiles to presentengaging new contentto users, which invites them to launch the app.

Made live tiles compelling byproviding fresh, frequently updated contentthat makes users feel
that the app is active even wheniit's not running.

Used awide tile to displaynew and interesting contentto the user, and periodic notifications to
update the tile content.

Used peektemplates to breaktile contentinto two frames.

Set an expiration on all periodic tile notifications to ensure thatthe tile's content does not persist
longerthanit's relevant.

Updated the live tile as information becomes available, for personalized content.
Updated the live tile no more than every 30 minutes, for non-personalized content.

Allowed the userto create secondarytiles for any contentthat they wish to monitor.

For more infosee Working with tiles.

Implementing search in AdventureWorks Shopper

To add search to your app you must participate in the Search contract. When you add the Search

contract, users can searchyour app fromanywhere in their system by selecting the Search charm.

17

Check Description
L] Used the Search charm to let users search for contentin an app.
[l Responded to OnQuerySubmitted and OnSearchApplication notifications.
L] Added a searchicon to the app canvas for users to get started using the app.
[l Implemented type to search for the app's hub, browse, and search full screen pages.
OJ Disabled type to search before showing Flyouts, and restored it when Flyouts close.
] Showed placeholdertextin the search box, to describe whatusers can search for.
] Used a ListView or GridView control to displaysearch results.
U Showed the user's querytext onthe searchresults page.
L] Used hithighlighting to highlightthe user's queryon the search results page.
[l Enabled users to navigate back to the last-viewed page after they look at the details fora
searchresult.
L] Provided app bar navigation on the search results page.
] Provided a suitable message ifthe search query returns no results.
[l Abstracted search classesthathave view dependencies, to keep the app testable.
] Restored page state correctly upon reactivation.
L] Saved the searchresults page forthe lastqueryin case the appis activated to search for that

guery again.

For moreinfosee Usingsearch.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

18

Improving performance in AdventureWorks Shopper

To deliverawell-performing, responsive Windows Store app you must think of performance asa
feature, to be planned forand measured throughoutthe lifecycle of your project.

Check

Description

L

Dodogoooooooddg goooogd

Performed app profiling to determine where code optimizations will have the greatesteffect in
reducing performance problems.

Measured app performance once you have code that performs meaningful work.

Taken performance measurements on hardware thathas the lowestanticipated specification.
Optimized actual app performance and perceived app performance.

Limited the startup time of the app.

Emphasized responsivenessin the Ul.

Trimmed resource dictionaries to reduce the amountof XAML the framework parses when the
app starts.

Reduced the number of XAML elements on a page to make the app render faster.
Reused brushes in order to reduce memoryconsumption.

Used independentanimations to avoid blocking the Ul thread.

Minimized the communication between the app and the web service.

Limited the amountof data downloaded from the web service.

Used Ul virtualization to only load into memorythose Ul elements thatare near the viewport.
Avoided unnecessaryapp termination.

Keptthe app's memoryusage low whenit's suspended.

Reduced the battery consumption ofthe app.

Minimized the amountof resources thatthe app uses.

Limited the time spentin transition between managed and native code.

Reduced garbage collectiontime.

For more info see Improving performance.

Testing and deploying AdventureWorks Shopper

Testinghelpstoensure thatan appis reliable, correct, and of high quality.

Check Description
] Performed unittesting, integration testing, user interface testing, suspend and resume testing,
security testing, localization testing, accessibilitytesting, performance testing, device testing,
and Windows certification testing.
L] Validated and testa release build ofthe app by using the Windows App Certification Kit.

For more infosee Testing and deploying AdventureWorks Shopper.

19

Using Prism for the Windows Runtime (Windows Store business apps
using C#,XAML, and Prism)

Summary

e Use Prismto implementthe Model-View-ViewModel (MVVM) patterninyour Windows
Store app.

e Use Prismto add validation support to your model classes.

e Use Prismto implement Flyouts and add items to the Settings pane.

Prism forthe Windows Runtime providestwo libraries that help developers create managed
Windows Store apps. The libraries accelerate development by providing support for bootstrapping

MVVM apps, state management, validation of userinput, navigation, event aggregation, data
binding, commands, Flyouts, settings, and search.

You will learn

e How to accelerate the development of your Windows Store app by using Prism.

Applies to

e Windows Runtime for Windows 8
e CH
¢ Extensible Application Markup Language (XAML)

This article describesthe general steps adeveloperneeds to performto use Prism to accomplish
different tasks. Itis not meantto provide you with detailed steps required to complete a task. If you
require more info, each section has links to the relevant documentation.

Many of the topicsinthis article assume that you are usingthe Unity dependency injection
container, and that you are using conventions defined by Prism. This guidanceis provided to make it
easierforyouto understand how to get started with Prism. However, you are notrequired to use
Unity, or any other dependency injection container, and you do not have to use the default
conventionsto associate views and view models. To understand how to use Prism without a
dependency injection container, or change the default conventions, see Changing the convention for

naming and locating views, Changing the convention for naming, locating, and associating view
models with views, Registering a view model factory with views instead of usingadependency

injection container.

For more info about the conventions defined by Prism, see Usingaconvention-based approach. For
more info about Prism, see Prism forthe Windows Runtime reference.

http://msdn.microsoft.com/en-us/library/windows/apps/xx130655.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899

20

Getting started

The following procedure shows how to update a Windows Store app to use the services provided by

Prism.

Add a reference tothe Microsoft.Practices.Prism.Store Apps library to your project to use the
services provided by the library.
Derive the App class from the MvvmAppBase class, provided by the

Microsoft.Practices.Prism.StoreApps library, in orderto gain supportfor MVVM and the core
services required by Windows Store apps.

Delete the OnLaunched and OnSuspending methods from the App class, as these methods
are provided by the MvvmAppBase class.

Override the OnLaunchApplication abstract method of the MvvmAppBase class, in the App

class, and add code to navigate to the first page of the app.

C#

protected override void OnLaunchApplication(LaunchActivatedEventArgs args)

{

NavigationService.Navigate("PageName", null);

Note PageName should be without the "Page" suffix. Forexample, use Homefor
HomePage.

Add a reference tothe Unity library to your project to use the Unity dependency injection
container.

Note The Microsoft.Practices.Prism.StoreApps library is not dependenton the Unity library.
To avoid using a dependency injection container see Registering aview modelfactory with

viewsinstead of using adependency injection container.

Create an instance of the UnityContainer class in the App class, so that you can use the
Unity dependency injection containertoregisterand resolve types and instances.

CH

private readonly IUnityContainer _container = new UnityContainer();

Override the OnRegisterKnownTypesForSerialization method inthe App class to register
any non-primitivetypesthatneedtobe saved and restored to survive app termination.

CH

SessionStateService.RegisterkKnownType (typeof(Address));

http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=290899

21

9. Override the Onlnitialize method inthe Appclassinorder to registertypesforthe Unity
containerand performany otherinitialization. Examples of app specificinitialization
behaviorinclude:

o Registeringinfrastructure services.
o Registeringtypesandinstancesthatyouuseinconstructors.
o Providingadelegate thatreturnsaview model type foragivenview type.

C#

protected override void OnInitialize(IActivatedEventArgs args)
{
_container.RegisterInstance(NavigationService);
_container.RegisterType<IAccountService, AccountService>
(new ContainerControlledLifetimeManager());
_container.RegisterType<IShippingAddressUserControlViewModel,
ShippingAddressUserControlViewModel>();

ViewModellLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)
>

~ 1l

return viewModelType;

1)

10. Note For a detailed example of an Onlnitialize method see the Appclassinthe
AdventureWorks Shopperreference implementation.
11. Override the Resolve method in the App classto returna constructed view model instance.

C#
protected override object Resolve(Type type)
{
return _container.Resolve(type);
}

For more info see Usingthe MVVM pattern, Registering aview modelfactory with views instead of
using a dependency injection container, Bootstrappingan MVVM Windows Store app Quickstart

using Prism forthe Windows Runtime, Creating and navigating between pages, and Prism forthe
Windows Runtime reference.

22

Creating a view

The following procedure shows how to create a view class that has support forlayout changes,
navigation, and state management.

1. Completethe Gettingstarted procedure.

2. Adda foldernamed Viewstothe root folder of your project.

3. Createanew pagein the Viewsfolderwhose name ends with "Page," in orderto use the
FrameNavigationService's default convention to navigate to pagesin the Views folder.

4. Modifythe page class to derive from the VisualStateAwarePage class, which provides
supportfor layout changes, navigation, and state management.

5. Addthe ViewModellLocator.AutoWireViewModel attached property to yourview XAMLin
orderto use the ViewModelLocator class to instantiate the view model class and associate it
withthe view class.

XAML

prism:ViewModellocator.AutoWireViewModel="true"

6. Override the OnNavigatedTo and OnNavigatedFrom methods if your page class needsto
perform additional logic, such as subscribing to an event orunsubscribingfroman event,
when page navigation occurs. Ensure that the OnNavigatedTo and OnNavigatedFrom
overrides call base.OnNavigatedTo and base.OnNavigatedFrom, respectively.

7. Override the SaveState and LoadState methods if you have view state, such as scroll
position, that needs to survive termination and be restored when the app is reactivated.

For more info see Creating and navigating between pages, Using the MVV M pattern, and Handling
suspend, resume, and activation.

Creating a view model class

The following procedure shows how to create a view model class that has support for property
change notification, navigation, and state management.

1. Completethe Gettingstarted procedure.

Add a foldernamed ViewModels to the root folder of your project.

3. Createanewclassin the ViewModels folder whose name corresponds with the name of a
view and ends with "ViewModel," in orderto use the ViewModelLocator's default
convention toinstantiate and associate view model classes with view classes.

4. Derive the view model class from the ViewModel base class, provided by the
Microsoft.Practices.Prism.StoreApps library, so that you can use the base class's
implementation of the INotifyPropertyChanged interface and gain supportfor navigation

and state management.
5. Modify the view model constructorso thatit accepts the servicesrequired by the view
model, such as an INavigationService instance.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

23

6. Annotate properties with the [RestorableState] custom attribute if you want theirvaluesto
survive termination.

For more info see Usingthe MVVM pattern.

Creating a model class with validation support

The following procedure shows how to create a model class that has supportfor validation. You
should complete the Getting started procedure before starting this procedure.

1. Adda modelclasstoyour projectand derive the model class from the
ValidatableBindableBase class, which provides validation support.

2. Adda propertytothe model classand add the appropriate attributes that derivefrom the
ValidationAttribute attribute, in orderto specify the client side validation.

CH
[Required(ErrorMessage = "First name is required.")]
public string FirstName
{
get { return _firstName; }
set { SetProperty(ref _firstName, value); }
b

3. Update the view XAMLthat binds to the property createdinthe previous step to show
validation error messages.
XAML

<TextBox Text="{Binding UserInfo.FirstName, Mode=TwoWay}"
behaviors:HighlightOnErrors.PropertyErrors=
"{Binding UserInfo.Errors[FirstName]}"/>

Note The HighlightOnErrors attached behavior can be foundinthe AdventureWorks
Shopperreferenceimplementation.

For more info Validating userinput and Validation Quickstart.

Creating a Flyout and showing it programmatically

The following procedure shows how to create a Flyout view thatappears fromthe right side of the
screen.

1. Completethe Gettingstarted procedure.
2. Createanew pagein the Views folder whose name ends with "Flyout," in orderto use the
FlyoutService's default convention to show Flyoutsin the Views folder.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

24

3. Derivethe page from the FlyoutView class, provided by the
Microsoft.Practices.Prism.StoreApps library, in orderto display the view as a Flyout.

4. Modifythe Flyoutview constructorto specify the width of the Flyout. The
StandardFlyoutSize class provides the two standard sizes for Flyouts.

C#

public CustomSettingFlyout() : base(StandardFlyoutSize.Narrow)
{

this.InitializeComponent();

5. Passthe IFlyoutService instance as a constructor parametertothe view model class that
needsto show the Flyout. Then, use the FlyoutService.ShowFlyout method to
programmatically display the Flyout from the view model class.

C#

FlyoutService.ShowFlyout("CustomSetting");

For more info see Creating and navigating between pages and Managing application data.

Adding items to the Settings pane
The following procedure shows how to add an item to the Settings pane that can invoke an action.

1. Complete the Gettingstarted procedure.
2. Override the GetSettingsCharmActionltems method inthe App class and add code to add
items tothe Settings pane.

C#

protected override IList<SettingsCharmActionItem>
GetSettingsCharmActionItems()

{
var settingsCharmItems = new List<SettingsCharmActionItem>();
settingsCharmItems.Add(new SettingsCharmActionItem("Text to show in
Settings pane", ActionToBePerformed));
settingsCharmItems .Add(new SettingsCharmActionItem("Custom setting",
() => FlyoutService.ShowFlyout("CustomSetting")));
return settingsCharmItems;
}

For more info see Managing application data.

25

Changing the convention for naming and locating views

The following procedure shows how to configure the FrameNavigationService class to look for views
ina location otherthanthe Viewsfolder.

1. Complete the Gettingstarted procedure.
2. Override the GetPageType methodinthe App classand add code to define the page
location and naming convention appropriateto yourapp.

C#
protected override Type GetPageType(string pageToken)
{
var assemblyQualifiedAppType = this.GetType().GetTypeInfo()
.AssemblyQualifiedName;
var pageNameWithParameter = assemblyQualifiedAppType.Replace
(this.GetType().FullName, this.GetType().Namespace +
".Pages.{0@}View");
var viewFullName = string.Format(CultureInfo.InvariantCulture,
pageNameWithParameter, pageToken);
var viewType = Type.GetType(viewFullName);
return viewType;
}

For more infosee Usingthe MVVM pattern.

Changing the convention for naming, locating, and associating view models
with views

The following procedure shows how to configure the ViewModelLocator class to look forview
modelsinalocation otherthanthe ViewModels folderin the same assembly.

1. Complete the Gettingstarted procedure.

2. Override the Onlnitialize method inthe App class and invoke the static
ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver method, passingin a
delegate that specifies aview type and returns a corresponding view model type.

CH#

protected override void OnInitialize(IActivatedEventArgs args)

{

ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)
>

~ 1l

var viewModelTypeName = string.Format(
CulturelInfo.InvariantCulture,
"MyProject.VMs. {0}ViewModel, MyProject, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=public_Key_Token",

26

viewType.Name);
var viewModelType = Type.GetType(viewModelTypeName);
return viewModelType;

1)

For more info see Usingthe MVVM pattern.

Registering a view model factory with views instead of using a dependency
injection container

The following procedure shows how to configure the ViewModelLocator class to explicitly specify
how to construct a view modelforagivenview type, instead of usinga containerfordependency
resolution and construction.

1. Completethe Gettingstarted procedure.
2. Override the Onlnitialize method inthe App class and registerafactory withthe
ViewModelLocator class that will create a view model instancethat will be associated with a

view.
C#
protected override void OnInitialize(IActivatedEventArgs args)
{
ViewModelLocator.Register(typeof(MyPage).ToString(), () =>
new MyPageViewModel(NavigationService));
}

For more info see Usingthe MVVM pattern and Bootstrappingan MVVM Windows Store app
Quickstart using Prism forthe Windows Runtime.

27

Designing the AdventureWorks Shopper user experience (Windows
Store business apps using C#, XAML, and Prism)

Summary

e Focuson the user experience and not on the features the app will have.

e Use storyboardstoiterate quickly onthe userexperience.

e Use standard Windows features to provide auserexperiencethatis consistent with other
apps. In addition, validate the userexperience with the Index of UX guidelines for Windows

Store apps.

In this article we explain the design process forthe AdventureWorks Shopper user experience and
the Windows 8 features that were used as part of the reference implementation.

You will learn

e How to plana Windows Store app.

e How youcan tieyour "greatat" statementto the app flow.

e How storyboards and prototypesdrive userexperience design.
e Which Windows 8 featuresto considerasyou planyourapp.

Applies to

e Windows Runtime for Windows 8
e CH
e Extensible Application Markup Language (XAML)

Making key decisions

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead for different form factors, accessibility, monetization,
and sellinginthe global market canreduce yourdevelopmenttime and make iteasiertocreate a
high quality app and getit certified. The following list summarizes the decisions to make when
planningyourapp:

e How shouldlIplana Windows Store app?

e What guidelines should | follow to ensure agood overall user experience?

e What experience doyouwantto provide toyourusers?

e Shouldthe apprun on differentform factors?

e How dol make the app accessible to usersregardless of theirabilities, disabilities, or
preferences?

e Shouldthe app be available inthe global market?

When planning a Windows Store app you should think more about what experience you want to
provide toyourusersand less about what Windows 8 features you wantto include. We recommend
that youfollow these steps:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

28

Decide the userexperience goals.

Decide the app flow.

Decide what Windows 8 featurestoinclude.
Decide how to monetize yourapp.

Make a good firstimpression.

Validate the design.

o U A WN P

For more infosee Planning Windows Store apps and AdventureWorks Shopper userexperiences.

There are many userexperience guidelines that can help you create a good Windows Store app.
However, the exact guidelines that you will follow willbe dependent on the experiences presentin
your app. For more infosee Index of UX guidelines for Windows Store apps.

In orderto decide what experienceyou wantto provide to your users we recommend that create a
"greatat" statementto guide youruser experience planning. Following this, you should design your
app flow. Anappflowisa set of related interactions that your users have with the app to achieve
theirgoals. To validate the design you should follow these steps:

1. Outlinethe flow of the app. Whatinteraction comes first? Whatinteraction follows the
previousinteraction?

2. Storyboardthe flow of the app. How should users move through the Ul to complete the
flow?

3. Prototype the app. Try out the app flow with a quick prototype.

For more infosee Deciding the userexperience goals and Deciding the app flow.

Appsshould be designed for different form factors, letting users manipulate the content tofit their
needs and preferences. Think of landscape view first so that yourapp will run on all form factors, but
rememberthat some screensrotate, so plan the layout of your content for different resolutions and
screensizes. Inaddition, because Windows is used worldwide, you need to design yourapp so that
resources, such as strings and images, are separated from their code to help make localization
easier. Also, yourapp should be availableto all users regardless of their abilities, disabilities, or
preferences. If you use the built-in Ul controls, you can get accessibility support with little extra
effort. Formore info see Deciding what Windows 8 features to use.

AdventureWorks Shopper user experiences

The AdventureWorks Shopperreferenceimplementationis ashoppingapp, and so we wanted to
design experiencesthat would enable users to shop easily and efficiently.

Deciding the user experience goals

Our first step was to create a "greatat" statementto guide our user experience planning. Here's the
"greatat" statementforthe AdventureWorks Shopperreferenceimplementation:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

29

AdventureWorks Shopper is great at letting users easily and efficiently order products from
AdventureWorks.

The goal of the AdventureWorks Shopper reference implementation is notto provide acomplete
shoppingapp, butto demonstrate how to architecta Windows Store businessapp. We used our
"greatat" statementto guide the design tradeoffsas we builtthe app, makingthe focus on what our
userswantto do, ratherthan whatthe app can do.

Deciding the app flow

We then brainstormed which aspects of ashoppingapp are the most crucial for a good user
experience, toletthese features guide us through the design process. The features that we came up
withare:

e Display and navigate products.

e Searchfor products.

e Authenticate usercredentials.

e Validate userinput.

e Orderproducts.

e Payfororders.

e Enableroamingdata forusercredentials.
e Pinproductsto the Start screen.

Thereis plenty of other functionality that we could provide in the AdventureWorks Shopper
reference implementation. But we feltthatthe ability to browse, search, and order products best
demonstrate the functionality for creatinga shoppingapp.

The app flowis connected toour "greatat" statement. A flow defines how the userinteracts with
the app to performtasks. Windows Store apps should be intuitive and require as few interactions as
possible. We used two techniques to help meet these goals: creating storyboards and mock-ups.

A storyboard defines the flow of an app. Storyboards focus on how we intend the app to behave,
and notthe specificdetails of what it will look like. Storyboards help bridge the gap between the
ideaofthe app and itsimplementation, butare typically fasterand cheaperto produce than
prototypingthe app. Forthe AdventureWorks Shopper reference implementation, storyboards were
critical to helping usto define the app flow. This technique iscommonly usedin the filmindustry and
isnow becomingstandardin userexperiencedesign. The following storyboard shows the main app
flow forthe AdventureWorks Shopperreference implementation.

30

ANCsREe » @||o A »@

[|

S |y

I R “ SE

|® Bikes o @] [®ridict information o @]

||||I|||||L_1|:I
I I g ——

I N |

|@ Shopping Cavd @ Endey Infovmattion
o
l 'D s | e B | | e B s | —
] s] | d ==
| — 1 | L — | [1
a
a a
© Checko Stmmany @® seach

—

Il

|

A mockup demonstrates the flow of the user experience, but more closely resembles what the end
product will look like. We created mock-ups based on our storyboards and iterated overtheir design
as ateam. These mockups also helped eachteam memberget afeel forwhatthe app should look
like. The following mockup shows the hub page.

31

Duringthe planning phase of the app, we also created small prototypes to validate feasibility. A
prototypeisa small app that demonstrates the flow of the Ul or some minimal functionality. For
example, aprototype could be created that only contains page navigation and commands, but
doesn'timplementany otherfunctionality. By making the experience real through software,

prototyping enablesyoutotestand validate the flow of yourdesign on devices such as tablets. You
can also create prototypesthat demonstrate core aspects of the app. For example, we created a
prototype that performs validation of userinputand notifies the user of any invalid input.
Prototypes enableyoutosafely explore design approaches before deciding onthe approach for the
app. Although you can prototype during the planning phase of yourapp, try not to focus too much
on writing code. Design the userexperience thatyouwantand thenimplementthatdesign whenit's
ready.

For more infosee Laying outyour Ul, Laying out an app page, and Guidelines forsnapped andfill

views.
Deciding whatWindows 8 features to use

When planninganew app it'simportantto provide an experience that's consistent with other
Windows Store apps. Doing so will make yourapp intuitiveto use. We researched the features that
the Windows platform provides by looking atthe Windows Developer Center, and by prototyping
and teamdiscussion. We brainstormed on which platform features would best support ourapp flow
and decided onthe features outlined here.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://code.msdn.microsoft.com/

32

Fundamentals

Splash screen. The splash screen will be used to smooth the transition between when users
launchthe app and whenit'sready for use. The splash screen should reinforce the
AdventureWorks Shopper brand to users, rather than distractthem or advertise tothem.
For more info see Guidelines for splash screens.

Controls. The app's Ul will showcase its content. Distractions will be minimized by only
havingrelevant elements onthe screensothat users become immersedinthe content. For
more info see Index of UX guidelines for Windows Store apps.

Suspend and resume app state. Users will switch away from the app and back to it, and
Windows will terminate itinthe background whenit's unused. The AdventureWorks
Shopperreferenceimplementation will save and resume state when required, in order to
maintain context. This state includes the scroll position on the prod uct catalog pagesand
partially entered data onthe checkout pages. Formore info see Handling suspend, resume,

and activation, and Guidelinesforapp suspend and resume.

Globalization, localization, and app resources. Because the app could be used worldwide,
the app will be designed so that resources, such as strings and images, are separated from
theircode to help make localization easier. For more info see Guidelines and checklist for

globalizing your app and Guidelines forapp resources.
Accessibility. The app will be availableto all users regardless of their abilities, disabilities, or
preferences. Formore infosee Plan foraccessibility.

Page design

Layout and navigation. The Ul will have alayoutthat users can intuitively and easily
navigate. For more info see Navigation design for Windows Store apps.

Layout and commanding. Commands will be placed consistently on the Ul, to instill user
confidence and to ease userinteraction. For more info see Laying outyour Ul and
Commanding design for Windows Store apps.

Layout and page design. Pagesinthe app will use agrid layout so that they adhere to the
Windows 8 silhouette. Formore info see Laying out an app page.

Typography. The app Ul will be clean and uncluttered, and so will use appropriatefontsizes,
weights, and colors. For more info see Guidelines forfonts.

Snapping and scaling

Flexible layouts. The app will handle landscape and portrait orientationsand let users
manipulate the content to fittheirneeds and preferences. For more info see Guidelines for
layouts.

Snapped and fill views. The app will be designed for users' multi-tasking needs. Users will be
able to use the app while they performtasksin anotherapp, and sosnappedviews must be
useful and maintain context when switching between snapped and unsnapped views. For
more info see Creating and navigating between pages and Guidelines for snapped and fill

views.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761499.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700394.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx

33

e Scaling to screens. The app Ul must look good on different sized devices, from small tablet
screenstolarge desktop screens. Formore info see Guidelinesforscalingto screens.

e Scaling to pixel density. Imagesinthe app must look good when scaled. Windows scales
apps to ensure consistent physical sizing regardless of the pixeldensity of the device. For
more infosee Guidelines forscalingto pixeldensity.

e Resizing. The app mustlook good when Windows resizesit. Windows automatically resizes
apps when the user changes the view state. Formore info see Guidelinesforresizing.

Touchinteraction

e Touch interaction. The app will providea consistentand well-performing set of user
interactions. For more info see Using touch and Guidelines for common userinteractions.

o Touch targeting. The app will provide appropriately sized and located touch targets. For
more infosee Guidelines fortargeting.

e Visual feedback. The app will provide clear visual feedback for useractions. For more info
see Guidelines forvisual feedback.

e Semantic Zoom. The app will help usersto navigate large amounts of related data. For more
infosee Using touch and Guidelines for SemanticZoom.

e Swipe and cross-slide. The app will use this standard interactionto selectitemsfromalist.
For more info see Using touch and Guidelines for cross-slide.
e Panning. The app will use this standard interaction to browse through content. For more

infosee Usingtouch and Guidelines for panning.

¢ Selectingtextand images. The app will use this standard interaction with content. Formore
infosee Usingtouch and Guidelines forselectingtextand images.

e Mouse interaction. The app will provide agood mouse experienceforusers without touch
screens. Formore infosee Using touch and Responding to mouse interactions.

e Keyboard interaction. The app will provide acomplete interaction experienceforusers who
preferusingakeyboard. Formore info see Respondingto keyboardinteractions.

Capabilities

e Search. The app will letusers search the app's content quickly from anywhere in the system.
For more infosee Guidelines and checklist forsearch.

Tiles and notifications

e Apptilesand secondary tiles. The app's tile will engage users, encouragingthemto use the
app, and keepingthe app feeling fresh and relevant. In addition, you can use secondary tiles
to promote interesting content fromyourapp onthe Start screen, and let userslaunch
directlyinto aspecificexperience within yourapp. For more infosee Working with tiles,
Guidelines and checklistfortiles and badges, and Guidelines and checklist for secondary
tiles.

e Notifications. The app'stile will be updated with new content through periodic notifications.
For more info see Guidelines and checklist for periodic notifications.

http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465362.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465355.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465370.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465299.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465334.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868246.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465403.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx

34

Data

e Roaming. The app will roamthe usercredentials. Formore info see Managing application
data and Guidelines forroaming app data.

e Settings. The app's settings will be accessible from one Ul surface, so that users can
configure the app through a common mechanism that they are familiar with. We decided
that billing, shipping, and payment datashould be accessed from the Settings charm. Initially
we used Flyoutsto display and enter this data, but after usingthe app we decided thatit
would be more appropriate to use a page. This removed the problem of alightdismissona
Flyoutlosingany datathat the user entered. Formore info see Managing application data
and Guidelines forapp settings.

Deciding how to monetize the app

Although AdventureWorks Shopperisafree app, its purpose isto drive salesfor AdventureWorks
through customers placing and payingfororders. In orderto significantly increase the number of
users who could use the app we decided to make it world-ready. Being world-ready not only means
supportinglocalized strings and images, it also means being aware of how users from different
cultures will use the app. For more info see Guidelines and checklist for globalizing yourapp and

Guidelinesforapp resources.

For more info about monetizing your app see Plan for monetization and Advertising Guidelines.

Makingagood firstimpression

Windows Store apps should convey their "great at" statement to users when they first launch the
app. Afterreferringback to our "great at" statement (AdventureWorks Shopper is great at letting
users easily and efficiently order products from AdventureWorks) we realized that product
promotion was key to allowing users to easilyand efficiently order products from AdventureWorks.
This could be enabled by:

e Havingalivetile, thatusestile notifications to promote products. When a userleavesthe
app, we wanted to maintain agood impression by regularly updating the live tile with
product offers.

e Usingthe splashscreentoexpressthe app's personality. We chose asplash screenimage
that fits the AdventureWorks branding and that reinforces the whole user experience.

e Havinga home page that clearly shows the primary purpose of the app. Users will be more
likely toexplore the rest of the app if theirinitial impressionis favorable.

Validating the design

Before beginning development, we presented our mockups and prototypes to stakeholdersin order
to gainfeedback to validate and polish ourdesign. We also cross-checked the design against the
Index of UX guidelines for Windows Store apps to ensure that we complied with the Windows Store
user experience guidelines. This prevented us from having to make core design changes laterinthe
development cycle.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465433.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj649139.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

35

Using the Model-View-ViewModel (MVVM) patternin
AdventureWorks Shopper (Windows Store business apps using C#,
XAML, and Prism)

Summary

e Use the Microsoft.Practices.Prism.StoreApps library to accelerate the development of
managed Windows Store apps that use the MVVM pattern.

e Use commandsto implementactionsinview model classesforcontrolsthat derive from
ButtonBase.

e Use attached behaviorstoimplementactionsinviewmodel classes for controls that don't
derive from ButtonBase.

The Model-View-ViewModel (MVVM) pattern lendsitself naturally to Windows Store apps that use
XAML. The AdventureWorks Shopperreferenceimplementation uses Prism forthe Windows
Runtime to provide support for MVVM. This article describes how to use Prismtoimplement MVVM
inyour Windows Store app.

You will learn

e How Windows Store apps can benefitfrom MVVM.

¢ How to use dependencyinjectiontodecouple concrete types from the code that depends on
the types.

e How to bootstrapa Windows Store app that uses the MVVM pattern, by using a dependency
injection container.

e How to connectview modelstoviews.

¢ How aviewisupdatedinresponse tochangesinthe underlying view model.

e How to invoke commandsand behaviors from views.

Applies to

e WindowsRuntime for Windows 8
o« CH#
¢ Extensible Application Markup Language (XAML)

Making key decisions

When you choose to use the MVVM patternto construct your app, you will have to make certain
design decisions that will be difficult to change lateron. Generally, these decisions are app-wideand
theirconsistent use throughoutthe app will improve developerand designer productivity. The
following list summarizes the decisions to make when implementing the MVVM pattern:

e Shouldluse Prismto provide supportfor MVVM?
e Shouldluse a dependencyinjection container?
o Whichdependencyinjection containershould luse?

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

36

o Whenis itappropriate toregisterand resolve components with adependency
injection container?
o Shouldacomponent'slifetime be managed by the container?
e Shouldthe app construct views orview models first?
e How shouldlconnectview modelstoviews?
o Shouldluse XAML or code-behind to setthe view's DataContext property?
o Shouldluse a view model locatorobject?
o Shouldluse an attached property to automatically connectview modelstoviews?
o Shouldluse a convention-based approach?
e Shouldlexpose commandsfrom myview models?
e Shouldluse behaviorsin myviews?
e Shouldlinclude designtime datasupportin myviews?
e Dolneedtosupporta view model hierarchy?

Prismincludes components to help accelerate the development of amanaged Windows Store app
that usesthe MVVM pattern. It helpsto accelerate development by providing core services
commonly required by a Windows Store app, allowing you to focus on developingthe user
experiencesforyourapp. Alternatively,you could choose to develop the core services yourself. For
more infosee Prism forthe Windows Runtime reference.

There are several advantages to using adependency injection container. First, a containerremoves
the needfora componentto locate its dependencies and manage their lifetime. Second, a container
allows mapping of implemented dependencies without affecting the component. Third, a container
facilitates testability by allowing dependencies to be mocked. Forth, acontainerincreases
maintainability by allowing new components to be easily added to the system.

In the context of a Windows Store app that uses the MVVM pattern, there are specificadvantages to
a dependencyinjection container. A container can be used for registering and resolving view models
and views. Inaddition, acontainercan be used for registering services, and injectingthem into view
models. Also, acontainercan create the view modelsandinjectthe views.

There are several dependency injection containers available, with two common choices being Unity
and MEF. Both Unity and MEF provide the same basicfunctionality for dependency injection, even
thoughthey work very differently. When considering which containerto use, keepin mind the
capabilities shownin the following table and determine which fits your scenario better.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

37

Both containers Unity only MEF only

Registertypesandinstances Resolves concrete types Discovers assembliesina

with the container. without registration. directory.

Imperatively create instances of Resolves open generics. Recomposes properties and

registered types. collections as new types are
discovered.

Injectinstances of registered Uses interception to capture Automatically exports derived

typesinto constructors and calls to objectsand add types.

properties. additional functionality to the

target object.
Have declarative attributesfor Is deployed withthe .NET
marking typesand Framework.

dependencies that need to be
managed.

Resolve dependenciesinan
object graph.

If you decide to use a dependency injection container, you should also consider whetheritis
appropriate toregister and resolve components using the container. Registeringand resolving
instances froma container has a performance cost because of the container's use of reflection for
creatingeach type, especially if components are being reconstructed for each page navigationin the
app. If there are many or deep dependencies, the cost of creation can increase significantly. In
addition, if the component does not have any dependencies oris not a dependency for othertypes,
it may not make sense to put itin the container. Also, if the component has asingle set of
dependenciesthatare integral tothe type and will never change, it may not make sense to putitin
the container.

You should also consider whetheracomponent's lifetime should be managed by the container.
Whenyou registera type the default behavior forthe Unity containeristo create a new instance of
the registered type each time the type is resolved orwhen the dependency mechanisminjects
instancesinto otherclasses. When you register aninstance the default behaviorforthe Unity
containeristo manage the lifetime of the object as a singleton. This means that the instance
remainsinscope as longas the containerisinscope, and itis disposed when the container goes out
of scope and is garbage-collected or when code explicitly disposes the container. If you want this
singleton behaviorforan objectthat Unity creates when you registertypes, you must explicitly
specify the ContainerControlledLifetimeManager class when registering the type. For more info see
Bootstrapping an MVVM Windows Store app Quickstart using Prism forthe Windows Runtime.

If you decide notto use a dependency injection containeryou can use the ViewModelLocator class,
provided by the Microsoft.Practices.Prism.StoreApps library, to register view model factories for

views, orinferthe view model using a convention-based approach. For more info see Usingthe
ViewModellLocator class to connectview models to views and Bootstrapping an MVVMWindows
Store app Quickstart using Prism for the Windows Runtime.

38

Decidingwhetheryourapp will construct views or the view models firstis anissue of preference and
complexity. With view first composition the app is conceptually composed of views which connect to
the view modelsthey depend upon. The primary benefit of this approachis that it makesit easy to
construct loosely coupled, unit testable apps because the view models have no depe ndence on the
viewsthemselves. It's also easy to understand the structure of an app by followingits visual
structure, ratherthan havingto track code executionin orderto understand how classes are created
and connectedtogether. Finally, view first construction aligns better with the Windows Runtime
navigation system becauseitis responsible for constructing the pages when navigation occurs,
which makes a view model first composition complex and misaligned with the platform. View model
first composition feels more natural tosome developers, since the view creation can be abstracted
away allowingthemtofocus onthe logical non-Ul structure of the app. However, thisapproachis
often complex, and it can become difficult to understand how the various parts of the app are
created and connected together. It can be difficult to understand the structure of an app
constructed this way, as itofteninvolves timespentin the debugger examining what classes gets
created, when, and by whom.

The decision on how to connectview models toviewsis based on complexity, performance, and
resilience:

e Ifcode-behindisusedtoconnectview modelstoviewsitcancause problemsforvisual
designers such as Blend for Microsoft Visual Studio 2012 for Windows 8 and Visual Studio.

e Usinga view model locator object hasthe advantage that the app hasa single classthatis
responsible forthe instantiation of viewmodels. The view model locator can also be used as
a point of substitution foralternate implementations of dependencies, such as forunit
testing ordesign time data.

e A convention-based connection approach removes the need formuch boilerplate code.

e An attached property can be used to performthe connection automatically. This offers the
advantage of simplicity, with the view having no explicit knowledge of the view model.

Note Theview will implicitly depend on specific properties, commands, and methods onthe view
model because of the data bindings it defines.

In Windows Store apps, you typically invoke some action in response toa user action, suchas a
button click that can be implemented by creating an event handlerinthe code -behind file. However,
MVVM discourages placing code in the code-behindfile asit's not easily testable because itdoesn't
maintain a good separation of concerns. If you wish to promote the testability of yourapp, by
reducingthe numberof eventhandlersinyourcode-behind files, you should expose commands
fromyour view models for ButtonBase-derived controls, and use behaviorsinyourviews for
controls that don't derive from ButtonBase, in orderto connectthem to view model exposed
commandsand actions.

If you will be usingavisual designerto design and maintain your Ul you'll need to include design
time data supportinyourapp so that you can view layouts accurately and see realistic results for
sizingand styling decisions.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

39

You should supporta view model hierarchy if it will help to eliminate redundant code in yourview
model classes. If you find identical functionality in multiple view model classes, such as code to
handle navigation, itshould be refactoredinto a base view model class from which all viewmodels
classeswill derive.

MVVM in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation uses the Unity dependency injection
container. The Unity containerreduces the dependency coupling between objects by providing a
facility toinstantiate instances of classes and manage their lifetime. During an object's creation, the
containerinjects any dependencies that the object requiresintoit. If those dependencies have not
yetbeen created, the containercreatesand resolves them first. Formore infosee Usinga
dependency injection container, Bootstrapping an MVVM Windows Store app Quickstart using Prism

for the Windows Runtime and Unity Container.

In the AdventureWorks Shopper reference implementation, views are constructed before view
models. There is one view class per page of the Ul (a page is an instance of the
Windows.Ul.Xaml.Controls.Page class), with design time data being supported on each viewin

orderto promote the designer-developer workflow. For more info see Creating and navigating
between pages.

Each view modelis declaratively connected to a corresponding view using an attached propertyona
view model locator object to automatically perform the connection. View model dependencies are
registered with the Unity dependency injection container, and resolved when the view modelis
created. A base view model class implements common functionality such as navigation and
suspend/resumesupportforview modelstate. View modelclasses then derive from this base class
inorder to inheritthe common functionality. For more info see Using the ViewModelLocator class
to connectview modelstoviews.

In order for a view model to participate in two-way data binding with the view, its properties must
raise the PropertyChanged event. View models satisfy this requirement by implementing the
INotifyPropertyChanged interface and raising the PropertyChanged event when a property is
changed. Listeners can respond appropriately to the property changes when they occur. For more

info see Data binding with the BindableBase class.

The AdventureWorks Shopper referenceimplementation uses two options forexecutingcode ona
view model inresponsetointeractionsonaview, suchasa buttonclick oritemselection. If the
controlis a command source, the control’s Command property is data-bound to an ICommand
property onthe view model. Whenthe control’scommandisinvoked, the code inthe view model
will be executed. In addition to commands, behaviors can be attached to an objectin the view and
can listenforan eventtobe raised. Inresponse, the behaviorcantheninvoke an Action or an
ICommand on the view model. Formore info see Ul interaction using the DelegateCommand class
and attached behaviors.

http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx

All of the view modelsinthe AdventureWorks Shopperreference implementation share the app’s
domain model, whichis often just called the model. The model consists of classes that the view
models use toimplement the app’s functionality. View models are connected to the model classes
through model properties onthe view model. However, if you want a strong separation between the
model and the view models, you can package model classesin aseparate library.

In the AdventureWorks Shopper Visual Studio solution there are two projects that contain the view,
view model, and model classes:

e Theviewclassesare locatedinthe AdventureWorks.Shopper project.
e Theview model and model classes are located in the AdventureWorks.UlLogic project.

Solution Explorer * 3 x
@le~ed sm &R
Search Solution Explorer (Ctrl+ 2 -
afa]Solution ‘adventureWorksShopper’ (10 projects)
b nuget
b Tests

f AdventureWorks.Shopper
b B{&E] AdventureWorks.UlLogic
B :ﬁ AdventureWorks WebServices

b &lcs] Microsoft.Practices.Prism.PubSubEvents
[@lce] Microsoft.Practices. Prism.StoreApps

What is MVVM?

MVVM is an architectural pattern that's a specialization of the presentation model pattern. It can be
used on many different platforms anditsintentisto provide aclean separation of concerns between
the userinterface controls and theirlogic. For more info about MVVM see MVVM Quickstart,
Implementing the MVVM Pattern, Advanced MVVMScenarios, and Developinga Windows Phone
Application using the MVVM Pattern.

Using a dependency injection container

Dependency injection enables decoupling of concrete types fromthe code thatdepends onthese
types. Itusesa containerthat holds a list of registrations and mappings between interfaces and
abstract types and the concrete types thatimplement orextend thesetypes. The AdventureWorks
Shopperreferenceimplementation uses the Unity dependency injection containerto manage the
instantiation of the view model and service classesinthe app.

Before you can inject dependenciesintoan object, the types of the dependencies need to be
registered with the container. Afteratype is registered, itcan be resolved orinjectedasa
dependency. Formore infosee Unity.

http://msdn.microsoft.com/en-us/library/windows/apps/gg430869.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405484.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405494.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899

41

In the AdventureWorks Shopperreference implementation, the App classinstantiates the
UnityContainerobjectandisthe only class inthe app that holds a reference to a UnityContainer
object. Types are registered in the Onlnitialize method in the App class.

Bootstrapping an MVVM app using the MvvmAppBase class

When you create a Windows Store app froma Visual Studio template, the App class derives from the
Application class. In the AdventureWorks Shopper reference implementation, the App class derives
fromthe MvvmAppBase class. The MvvmAppBase class provides support for suspension,
navigation, Flyouts, settings, search, and resolving view types from view names. The App class
derives fromthe MvvmAppBase class and provides app specificstartup behavior.

The MvvmAppBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is responsible
for providing core startup behaviorforan MVVM app, and derives from the Application class. The
MvvmAppBase class constructoris the entry pointforthe app. The following diagram shows a

conceptual view of how app startup occurs.

MvvmAappBase App MvvmAppBase App
Constructor Constructor OnwWindowCreated ™ Onlnitialize
l App MvwmAppBase App
InitializeComponeant OnLaunched OnLaunchApplication
MvwmAppBase

InitializeFramefsync

MvvmAppBase

CreateNavigationService —

When deriving from the MvvmAppBase class, a required override is the OnLaunchApplication
method from where you will typically perform yourinitial navigation to alaunch page, or to the
appropriate page based on a secondary tile launch of the app. The followin g code example shows
the OnLaunchApplication methodinthe App class.

Ci#: AdventureWorks.Shopper\App.xaml.cs

protected override void OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{
// The app was launched from a Secondary Tile
// Navigate to the item's page
NavigationService.Navigate("ItemDetail", args.Arguments);
}
else

{

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

42

// Navigate to the initial page
NavigationService.Navigate("Hub", null);

This method navigates to the HubPage inthe app, when the app launches normally, orthe
ItemDetailPage if the appis launched from a secondary tile. "Hub" and "ItemDetail" are specified as
the logical names of the views that will be navigated to. The default convention specified in the
MvvmAppBase class isto append "Page" tothe name and look forthat page in a .Views child
namespace in the project. Alternatively, another convention can be specified by overriding the
GetPageType methodin the MvvmAppBase class. For more info see Handling navigation requests.

The app usesthe Unity dependency injection containerto reduce the dependency coupling between
objects by providing afacility to instantiate instances of classes and manage theirlifetime based on
the configuration of the container. Aninstance of the containeris created as a singletoninthe App
class, as shownin the following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

private readonly IUnityContainer _container = new UnityContainer();

The Onlnitialize method in the MvvmAppBase classis overriddeninthe App class with app specific
initialization behavior. Forinstance, this method should be overridden if you need toinitialize
services, orseta defaultfactory or default view model resolver for the ViewModelLocator object.
The following code example shows some of the Onlnitialize method inthe App class.

C#: AdventureWorks.Shopper\App.xaml.cs

_container.RegisterInstance<INavigationService>(NavigationService);

_container.RegisterInstance<ISessionStateService>(SessionStateService);

_container.RegisterInstance<IFlyoutService>(FlyoutService);

_container.RegisterInstance<IEventAggregator>(_eventAggregator);

_container.RegisterInstance<IResourcelLoader>(new ResourcelLoaderAdapter(
new ResourcelLoader()));

This code registers serviceinstances with the container as singletons, based on theirrespective
interfaces, sothat the view model classes can take dependencies on them. This means that the
containerwill cache the instances on behalf of the app, with the lifetime of the instances then being
tiedto the lifetime of the container.

A view model locatorobjectis responsible for managing the instantiation of view models and their
association toviews. For more info see Using the ViewModelLocator class to connect view models

to views. When the view model classes are instantiated the containerwill inject the dependencies
that are required. If the dependencies have notyet been created, the container creates and resolves
them first. This approach removesthe need foran objecttolocate its dependencies or manage their

43

lifetimes, allows swapping of implemented dependencies without affecting the object, and
facilitating testability by allowing dependencies to be mocked.

Using the ViewModelLocator class to connect view models to views

The AdventureWorks Shopper referenceimplementation uses aview model locatorobjectto
manage the instantiation of view models and theirassociation to views. This has the advantage that
the app has a single class thatis responsible for the instantiation.

The ViewModelLocator class, in the Microsoft.Practices.Prism.StoreApps library, has an attached

property, AutoWireViewModel thatis used to associate view models with views. In the view's XAML
this attached propertyis setto true to indicate that the view model should be automatically
connectedtothe view, asshowninthe following code example.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

Infrastructure:ViewModelLocator .AutoWireViewModel="true"

The AutoWireViewModel propertyisadependency property thatisinitialized to false, and wheniits
value changes the AutoWireViewModelChanged event handleris called. This method resolves the
view model forthe view. The following code example shows how thisis achieved.

C#: Microsoft.Practices.Prism.StoreApps\ViewModelLocator.cs

private static void AutoWireViewModelChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{

FrameworkElement view = d as FrameworkElement;
if (view == null) return; // Incorrect hookup, do no harm

// Try mappings first
object viewModel = GetViewModelForView(view);
// Fallback to convention based
if (viewModel == null)
{
var viewModelType = defaultViewTypeToViewModelTypeResolver(
view.GetType());
if (viewModelType == null) return;

// Really need Container or Factories here to deal with injecting
// dependencies on construction
viewModel = defaultViewModelFactory(viewModelType);

}

view.DataContext = viewModel;

The AutoWireViewModelChanged method first attempts to resolve the view model from any
mappingsthat may have beenregistered by the Register method of the ViewModelLocator class. If
the view model cannot be resolved using this approach, forinstance if the mapping wasn't created,

the method falls back to using a convention-based approach to resolve the correct view model type.
This convention assumes thatview modelsare ina.ViewModels child namespace, and thatview
model names correspond with view names and end with "ViewModel". Formore info see Usinga
convention-based approach. Finally, the method sets the DataContext property of the view type to
the registered viewmodel type.

Using a convention-based approach

A convention-based approach to connecting view models to views removes the need for much
boilerplate code. The AdventureWorks Shopper reference implementation redefines the convention
for resolving view model types from view types. The convention assumes that:

1. Viewmodeltypesare locatedinaseparate assembly fromthe viewtypes.
2. Viewmodel typesare locatedin the AdventureWorks.UlLogicassembly.
3. Viewmodel type namesappend "ViewModel" to the view type names.

Using this convention, aview named HubPage will have aview model named HubPageViewModel.
The following code example shows how the App class overrides the
SetDefaultViewTypeToViewModelTypeResolver delegatein the ViewModelLocator class, to define
how to resolve view model type names from view type names.

C#: AdventureWorks.Shopper\App.xaml.cs

ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver ((viewType) =>
{

var viewModelTypeName = string.Format(CultureInfo.InvariantCulture,
"AdventureWorks.UILogic.ViewModels.{@}ViewModel,
AdventureWorks.UILogic, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=634ac3171ee5190a", viewType.Name);

var viewModelType = Type.GetType(viewModelTypeName);

return viewModelType;

s

Other approaches to connect view models to views

There are many approachesthat can be used to connectview and view model classesat runtime.
The following sections describe three of these approaches.

Creatinga view model declaratively

The simplestapproachisforthe view to declaratively instantiateits corresponding view modelin
XAML. When the view is constructed, the corresponding view model object willalso be constructed.
This approach can be demonstrated inthe following code.

XAML

<Page.DataContext>
<HubPageViewModel />
</Page.DataContext>

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

45

When the Page is created, an instance of the HubPageViewModel is automatically constructed and
setas the view's data context. This approach requires yourview model to have a default (parameter-
less) constructor.

This declarative construction and assignment of the view model by the view has the advantage that
it is simple and works well in design-time tools such as Blend and Visual Studio.

Creating a view model programmatically

A view can have code in the code-behind filethatresultsinthe view model being assigned toiits
DataContext property. Thisis often accomplished inthe view's constructor, as showninthe
following code example.

C#
public HubPage()
{
InitializeComponent();
this.DataContext = new HubPageViewModel();
}

Connectingaview modeltoaviewinacode-behindfileis discouraged asit can cause problems for
designersinboth Blend and Visual Studio.

Creatinga view defined as a data template

A view can be defined as a data template and associated with aview model type. Datatemplates can
be defined as resources, orthey can be defined inline within the control that will display the view
model. The content of the control isthe view model instance, and the datatemplateisusedto
visually representit. Thistechnique is an example of asituationin which the view modelis
instantiated first, followed by the creation of the view.

Data templates are flexible and lightweight. The Ul designer can use them to easily define the visual
representation of aview model without requiringany complex code. Data templates are restricted
to views that do not require any Ul logic(code-behind). Blend can be used to visually design and edit
data templates.

The following example shows a GridView thatis boundtoa collection of
ShoppingCartitemViewModels. Each objectin the ShoppingCartitemViewModels collectionisa
view model instance. The view for each ShoppingCartltemViewModel is defined by the
ItemTemplate property. The ShoppingCartitemTemplate specifies thatthe view foreach
ShoppingCartitemViewModel consists of a Grid containing multiple child elements,includingan
Image and several TextBlocks.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx

46

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<GridView x:Name="ShoppingCartItemsGridView"
x:Uid="ShoppingCartItemsGridView"
AutomationProperties.AutomationId="ShoppingCartItemsGridView"
SelectionMode="Single"
Width="Auto"
Grid.Row="2"
Grid.Column="1"
Grid.RowSpan="3"
VerticalAlignment="Top"
ItemsSource="{Binding ShoppingCartItemViewModels}"
SelectedItem="{Binding SelectedItem, Mode=TwoWay}"
ItemTemplate="{StaticResource ShoppingCartItemTemplate}"
Margin="0,0,0,0" />

As well as defining adata template as a resource, they can also be defined inline, oryou could place
the detailed code from the template into a user control and declare an instance of the user control
inside the template.

Data binding with the BindableBase class

The Windows Runtime provides powerful data binding capabilities. Your view model and model
classes should be designed to support data binding so that they can take advantage of these
capabilities. For more info about data bindingin the Windows Runtime, see Data binding overview.

Allview model and model classes that are accessible to the view should implement the
INotifyPropertyChanged interface. Implementing the INotifyPropertyChanged interface in your

view model ormodel classes allows them to provide change notifications to any data-bound controls
inthe view whenthe underlying property value changes. However, this can be repetitiveand error-
prone. Therefore, the Microsoft.Practices.Prism.Store Apps library provides the BindableBase class
that implements the INotifyPropertyChanged interface. The following code example shows this

class.

C#: Microsoft.Practices.Prism.StoreApps\BindableBase.cs

public abstract class BindableBase : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;

protected virtual bool SetProperty<T>(ref T storage, T value,
[CallerMemberName] string propertyName = null)

{

if (object.Equals(storage, value)) return false;

storage = value;
this.OnPropertyChanged(propertyName);

return true;

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

47

protected void OnPropertyChanged(string propertyName)

{
var eventHandler = this.PropertyChanged;
if (eventHandler != null)
{
eventHandler(this, new PropertyChangedEventArgs(propertyName));
}
}

Note The BindableBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is
identical to the BindableBase class provided by the Visual Studio project templates.

Each view model classinthe AdventureWorks Shopper reference implementation derives from the
ViewModel base class thatinturn derives from the BindableBase base class. Therefore, each view
model class uses the SetProperty method in the BindableBase class to provide property change
notification. The following code example shows how property change notification isimplementedin
aview model classin the AdventureWorks Shopper reference implementation.

C#: AdventureWorks.UlLogic\ViewModels\HubPageViewModel.cs

public IReadOnlyCollection<CategoryViewModel> RootCategories
{

get { return _rootCategories; }
private set { SetProperty(ref _rootCategories, value); }

Additional considerations

You should design yourapp forthe correct use of property change notification. Here are some
pointstoremember:

e Neverraise the PropertyChanged event duringyourobject's constructorif you are
initializing a property. Data-bound controlsinthe view cannot have subscribed to receive
change notifications at this point.

e Alwaysimplementthe INotifyPropertyChanged interface on any view model or model
classesthatare accessible tothe view.

e Alwaysraise a PropertyChanged eventif a publicproperty's value changes. Do notassume
that you can ignore raising the PropertyChanged event because of knowledge of how XAML
binding occurs. Such assumptions lead to brittle code.

e Neverusea publicproperty's get method to modify fields or raise the PropertyChanged
event.

e Alwaysraise the PropertyChanged event forany calculated properties whosevalues are
used by other propertiesinthe view model or model.

e Neverraise a PropertyChanged eventif the property does not change. This means that you
must compare the old and new values before raising the PropertyChanged event.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

48

e Neverraise more than one PropertyChanged event with the same property name argument
within asingle synchronous invocation of a public method of your class. Forexample,
suppose you have a Count property whose backing store is the _count field. If amethod
increments _counta hundred times during the execution of aloop, itshould only raise
property change notification on the Count property once afterall the workis complete. For
asynchronous methods you can raise the PropertyChanged event fora given property name
in each synchronous segment of an asynchronous continuation chain.

e Alwaysraise the PropertyChanged event at the end of the method that makes a property
change, or whenyourobjectis knownto be in a safe state. Raising the eventinterrupts your
operation byinvokingthe event's handlers synchronously. If this happensinthe middle of
your operation, you may expose your object to callback functions whenitisinan unsafe,
partially updated state. Itisalso possible for cascading changes to be triggered by
PropertyChanged events. Cascading changes generally require updates to be complete
before the cascading change is safe to execute.

Ul interaction using the DelegateCommand class and attached behaviors

In Windows Store apps, you typically invoke some actionin response to a user action (such as a
button click) that can be implemented by creatingan event handlerinthe code-behindfile.
However, inthe MVVM pattern, the responsibility forimplementing the action lies with the view
model, and you should try to avoid placing code inthe code-behindfile.

Implementing command objects

Commands provide a convenient way to represent actions that can be easily bound to controlsin the
Ul. They encapsulate the actual code that implements the action or operation and help to keep it
decoupled fromits actual visual representationin the view. The Microsoft.Practices.Prism.StoreApps
library provides the DelegateCommand class toimplement commands.

View models typically expose command properties, for binding fromthe view, that are object
instances thatimplement the ICommand interface. XAMLinherently supports commands and
ButtonBase-derived controls providea Command property that can be data boundto an ICommand
object provided by the view model. The ICommand interface defines an Execute method, which
encapsulates the operationitself, and a CanExecute method, which indicates whetherthe command
can be invoked at a particulartime. Alternatively, acommand behavior can be used to associate a
control witha command method provided by the view model.

Note Behaviors are a powerful and flexible extensibility mechanism that can be used to encapsulate
interaction logicand behaviorthat can be declaratively associated with controlsinthe view.
Command behaviors can be used to associate methods with controls that were not specifically
designedtointeract with commands. For more info see Implementing behaviors to supplement the
functionalityof XAMLelements.

The AdventureWorks Shopper referenceimplementation uses the DelegateCommand class that
encapsulates two delegates that each reference amethod implemented within your view model

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

49

class. It inherits from the DelegateCommandBase class thatimplements the ICommand interface’s
Execute and CanExecute methods by invokingthese delegates. You specify the delegatesto your
view model methods inthe DelegateCommand class constructor, which is defined as follows.

C#: Microsoft.Practices.Prism.StoreApps\DelegateCommand.cs

public DelegateCommand(Action<T> executeMethod, Func<T, bool> canExecuteMethod)
: base((o) => executeMethod((T)o), (o) => canExecuteMethod((T)o))

{
if (executeMethod == null || canExecuteMethod == null)

throw new ArgumentNullException("executeMethod");

For example, the following code shows how a DelegateCommand instance, which represents asign
incommand, is constructed by specifying delegates to the SignlnAsyncand CanSignin view model
methods. The commandisthen exposedtothe view through aread-only property thatreturnsa
reference toan ICommand.

C#: AdventureWorks.UILogic\ViewModels\SigninFlyoutViewModel.cs

public DelegateCommand SignInCommand { get; private set; }
SignInCommand = DelegateCommand.FromAsyncHandler(SignInAsync, CanSignIn);
The DelegateCommand classis a generictype. The type argument specifies the type of the

command parameter passed to the Execute and CanExecute methods. A non-genericversion of the
DelegateCommand classis also provided foruse when acommand parameteris not required.

When the Execute method is called onthe DelegateCommand object, it simply forwards the call to
the methodinthe view model class viathe delegate that you specified in the constructor. Similarly,
when the CanExecute methodis called, the corresponding method in the viewmodelclassis called.
The delegate to the CanExecute method in the constructoris optional. If adelegate is not specified,
the DelegateCommand will always return true for CanExecute.

The view model canindicate achange in the command’s CanExecute status by callingthe
RaiseCanExecuteChanged method onthe DelegateCommand object. This causesthe
CanExecuteChanged eventto be raised. Any controlsinthe Ul that are bound to the command will
update theirenabled status to reflect the availability of the bound command.

Invoking commands fromaview

Any controls that derive from ButtonBase, such as Button or HyperlinkButton, can be easily data
bound to a command through the Command property. The following code example shows how the
SubmitButton in the SigninFlyout binds to the SigninCommand in the SigninFlyoutViewModel class.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecutechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.hyperlinkbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx

50

XAML: AdventureWorks.Shopper\Views\SigninFlyout.xaml

<Button x:Uid="SubmitButton"
x:Name="SubmitButton"
Background="{StaticResource AWShopperAccentBrush}"
Content="Submit"
Width="280"
Foreground="{StaticResource AWShopperButtonForegroundBrush}"
Margin="0,25,0,0"
Command="{Binding SignInCommand}"
AutomationProperties.AutomationId="SignInSubmitButton"
Style="{StaticResource LightButtonStyle}" />

A command parameter can also be optionally defined using the CommandParameter property. The
type of the expected argumentis specified inthe Execute and CanExecute target methods. The
control will automatically invoke the target command when the userinteracts with that control, and
the command parameter, if provided, will be passed as the argument tothe command’s Execute

method.
Implementing behaviors to supplementthe functionality of XAML elements

A behaviorallows you to add functionality to a XAML element by writing that functionalityina
behavior class and attachingit to the elementasifit was part of the elementitself. Abehaviorcan
be attachedto a XAML elementthrough attached properties. The behavior canthen use the exposed
APl of the elementtowhichitis attached to add functionality to thatelement orotherelementsin
the visual tree of the view. Formore info see Dependency properties overview, Attached properties

overview, and Custom attached properties.

Behaviors enable youtoimplement code that you would normally have to write as code -behind
becauseitdirectlyinteracts with the APl of XAMLelements, in such away thatit can be concisely
attached to a XAML element and packaged for reuse across more than one view orapp. In the
context of MVVM, behaviors are agood approach to connectingitemsthatare occurringinthe view
due to userinteraction, with the executionin aview model.

An attached behaviorisabehaviorthatisdefined as a staticclass with one or more attached
properties contained within it. An attached property can define achange callback handler when the
dependency propertyissetona targetelement. The callback handler gets passed areference to the
elementonwhichitisbeingattached and an argumentthat defines whatthe old and new values for
the property are. The change callback handleris then usedto connect new functionality to the XAML
elementthe propertyis attached to by manipulating the reference to it that gets passedin. The
typical patternisthat the change callback handlerwill cast the element reference to aknown
elementtype thatthe behavioris designed to enhance. Thenit will connect to events exposed by
that elementtype, modify properties of the element, or call methods on the element to manifest
the desired behavior. Forexample, the AdventureWorks Shopper referenceimplementation
providesthe ListViewltemClickedToAction behavior that casts the elementreference to the
ListViewBase type, whichis the base class for the GridView and ListView controls, then subscribes

to the ItemClickeventandinthe handlerforthe eventinvokes an Action.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.commandparameter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700353.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965327.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx

51

C#: AdventureWorks.Shopper\Behaviors\ListViewltemClickedToAction.cs

public static class ListViewItemClickedToAction

{
public static DependencyProperty ActionProperty =
DependencyProperty .RegisterAttached("Action", typeof(Action<object>),
typeof (ListViewItemClickedToAction),
new PropertyMetadata(null, OnActionChanged));
private static void OnActionChanged(DependencyObject d,
DependencyPropertyChangedEventArgs args)
{
ListViewBase listView = (ListViewBase)d;
if (listView != null)
{
listView.ItemClick += listView_ ItemClick;
listView.Unloaded += listView_Unloaded;
}
}
static void listView_Unloaded(object sender, RoutedEventArgs e)
{
ListViewBase listView = (ListViewBase)sender;
listView.ItemClick -= listView_ItemClick;
listView.Unloaded -= listView Unloaded;
}
static void listView_ItemClick(object sender, ItemClickEventArgs e)
{
var listView = (ListViewBase)sender;
Action<object> action = (Action<object>)listView.GetValue(ActionProperty);
action(e.ClickedItem);
}
}

Unlike controlsthat can be bound directly toa command, the ListViewltemClickedToAction
behavior does notautomatically enableordisable the control based onavalue returned by a
CanExecute delegate. Toimplement this behavior, you have to databind the IsEnabled property of
the control directly to a suitable property on the view model.

In addition, when writing attached behaviorsitisimportant that you unsubscribe from subscribed
events atthe appropriate time, so that you do not cause memory leaks.

Invoking behaviors fromaview
Behaviors are particularly useful if you want to attach a command method to a control that does not

derive from ButtonBase. For example, the AdventureWorks Shopper reference implementation uses
the ListViewltemClickedToAction attached behaviorto enable the ItemClick event of the

http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

52

MultipleSizedGridView control to be handled inaview model, ratherthanin the page's code -
behind.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<controls:MultipleSizedGridView x:Name="itemsGridView"

AutomationProperties.AutomationId="HubPageItemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0,-3,0,0"
Padding="116,0, 40, 46"
ItemsSource="{Binding Source={StaticResource groupedItemsViewSource}}"
ItemTemplate="{StaticResource AWShopperItemTemplate}"
SelectionMode="None"
ScrollViewer.IsHorizontalScrollChainingEnabled="False"
IsItemClickEnabled="True"
behaviors:ListViewItemClickedToAction.Action=

"{Binding ProductNavigationAction}">

This behavior binds the ItemClick event of the MultipleSizedGridView to the
ProductNavigationAction property in the HubPageViewModel class. So when a GridViewltem is
selected the ProductNavigationAction is executed which navigates from the HubPage to the
ItemDetailPage.

Additional considerations

Here are some additional considerations when applyingthe MVVM pattern to Windows Store apps
in CH.

Centralize data conversionsin the view model ora conversionlayer

The view model provides datafromthe modelina formthat the view can easily use. Todo thisthe
view model sometimes has to perform data conversion. Placing this data conversionin the view
modelisa goodideabecauseitprovides propertiesinaformthat the Ul can bindto. Itis also
possible to have aseparate data conversion layerthat sits between the view model and the view.
This might occur, for example, when datatypes need special formatting that the view model doesn’t
provide.

Expose operationalmodesin the view model

The view model may also be responsible for defining logical state changes that affect some aspect of
the displayinthe view, such as an indication that some operationis pending or whethera particular
commandis available. Youdon'tneed code-behind to enableand disable Ul elements—you can
achieve this by bindingtoa view model property, or with visual states.

Keep views and view modelsindependent

The binding of views to a particular propertyinits data source should be a view's principal
dependency onits corresponding view model. In particular, do notreference view types orthe

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

53

Windows.Current object from view models. If you follow the principles we outlined here, you will
have the ability to test view modelsinisolation, and reduce the likelihood of software defects by

limiting scope.
Use asynchronous programming techniques to keep the Ul responsive

Windows Store apps are about a fast and fluid user experience. For that reason the AdventureWorks
Shopperreferenceimplementation keeps the Ul thread unblocked. AdventureWorks Shopperuses
asynchronous library methods for /O operations and raises events to asynchronously notify the

view of a property change.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.current.aspx

54

Creating and navigating between pages in AdventureWorks Shopper
(Windows Store business apps using C#, XAML, and Prism)

Summary

o Create pagesusingthe MVVM patternif appropriate to your requirements. When using
MVVM, use XAML data binding to link each page to a view model object.

e Designyourpagesfor landscape, portrait, snap, andfill layout. In addition, use the
VisualStateAwarePage class, provided by the Microsoft.Practices.Prism.StoreApps library, to
provide view management.

e Implementthe INavigationAware interface, provided by the
Microsoft.Practices.Prism.StoreApps library, to enable a class to participate in a navigation
operation. Use the FrameNavigationService class, provided by the
Microsoft.Practices.Prism.StoreApps library, to provide navigation supportto a class.

In the AdventureWorks Shopper reference implementation there is one page foreach screenthata
usercan navigate to. The app creates the first page on startup and then creates subsequent pagesin
response to navigation requests. View management and navigation supportis provided to pages by
Prism forthe Windows Runtime. AdventureWorks Shopper's pages support landscape and portrait
orientations as well as snap and fill layouts. In addition, pages are localizable and accessible.

You will learn

e How pageswere designedin AdventureWorks Shopper.

e How AdventureWorks Shopper creates pages and theirdatasourcesat run time.

e How to create design time datato support designers.

e How AdventureWorks Shopper pages supportapp view states such as the snapped view.
¢ How AdventureWorks Shopper pages supportlocalization and accessibility.

e How AdventureWorks Shopper performs navigation between pages.

Applies to

¢ WindowsRuntime for Windows 8
o« CH#
¢ Extensible Application Markup Language (XAML)

Making key decisions

The app page isthe focal point for designing your Ul. It holds all of your content and controlsfora
single point of interaction with the user within yourapp. Whenever possible, you should integrate
your Ul elementsinline intothe app page. Presenting your Ulinline lets users fullyimmerse
themselvesinyourapp and stay in context, as opposed to using pop-ups, dialogs, or overlapping
windows thatwere common in previous Windows desktop application platforms. You can create as
many app pagesas you need to supportyouruser scenarios.

55

The following list summarizes the decisions to make when creating pages in yourapp:

e What tool should | use to create page content?

e What minimum resolution should | design my pages for?

e Should my page contentfill the screen, regardless of resolution?

e Should my pagesadapt to different orientations and layouts?

e How shouldllay out Ul elements on each page?

e What shouldIdisplayinsnapand fill view?

e How should|test my page layout on different screen sizes?

e Shouldladd designtime datato my pages?

e Should I make my pages easily localizable?

e Should I make my pages accessible?

e Shouldlcache pagesin my app?

e Where should navigation logicreside?

e How shouldlinvoke navigationfromaview?

e What commands belongon the top app bar and the bottom app bar?

e Should common page navigation functionality be implemented on each page, orcan it be
encapsulatedintoasingle control forreuse on each page?

e Shouldthe page being navigated toreside inthe same assembly that the navigation request
originatesfrom?

e How shouldIspecify anavigationtarget?

We recommend thatyou use Visual Studio to work with the code -focused aspects of your app.
Visual Studiois best suited for writing code, running, and debugging yourapp. We recommend t hat
you use Blend for Microsoft Visual Studio 2012 for Windows 8 to work on the visual appearance of
your app. You can use Blend to create pages and custom controls, change templates and styles, and
create animations. Blend comes with minimal code-behind support. For more info about XAML
editingtools, see Blend for Visual Studio 2012 and Creatinga Ul by using the XAML Designer.

There are two primary screen resolutions thatyourapp should support. The minimum resolution at
which Windows Store apps will runis 1024x768. However, the minimum resolution required to
supportall of the features of Windows 8, including multitasking with snap, is 1366x768. When
designing pages foraminimum resolution of 1024x768 you should ensure that all of your Ul fitson
the screen without clipping. When designing pages foran optimal resolution of 1366x768 you should
ensure thatall of your Ul fits on the screen without blank regions. Page content should fill the screen
to the best of itsabilityand should appearto be thoughtfully designed forvarying screen sizes. Users
who buy larger monitors expect that their apps will continueto look good onthese large screensand
fill the screen with more content, where possible. For more info see Guidelinesforscalingto

screens.

Users can rotate and flip theirtablets, slates, and monitors, so you should ensurethat you app can
handle both landscape and portrait orientations. In addition, because users can work with up to two
apps at once, you should provide layouts thatare fluid and flexible enough to support fill, and snap
layouts. A snapped app occupies a narrow region of the screen, while anappinthe fill view fills the
screen areanot occupied by the snapped app. Snapped and fill views are only available on displays

http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh921077.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx

56

with a horizontal resolution of 1366 pixels orgreater. Thisis because the snapped view is 320 pixels
wide, and can be placed on eitherside of the screen. The remaining 1046 pixels are allocated to the
splitterand the fill view, which must always have a horizontal resolution of 1024 pixels or greater.
For more infosee Guidelines for layouts and Guidelines for snapped and fill views.

The user interface in Windows 8 strives to maintain a consistent silhouetteacrossits apps. The
signature characteristic of the silhouette isawide margin onthe top, bottom, and left edges. This
wide margin helps users understand the horizontal panning direction of the content. You should
follow a consistent layout pattern for margins, page headers, gutter widths, and other such elements
on your pages. For more infosee Laying outan app page.

Whenyou plan forfull screen, snap, and fill views, yourapp's Ul should reflow smoothly and
gracefully toaccommodate screen size, orientation, and userinteractions. You should maintain state
insnap view, evenifitmeans showingless content orreducingfunctionality. In addition, you should
have feature parity across states. The userstill expects to be able tointeract with your app whenitis
snapped. If you can't keep parity for a specificfeature, we recommend thatyouinclude an entry
pointto the feature and programmatically unsnap the app when the usertriggersthat entry point.
However, youshould neveradd Ul controlsto programmatically unsnap yourapp. The splitter
betweenthe appsisalways presentand lets the user unsnap wheneverthey want. Formore info see
Guidelinesforsnappedandfill views.

Most people don'thave many devices at their disposal for testing page layout on different screen
sizes. However, you can use the Windows Simulatorto run your app on a variety of screensizes,
orientations, and pixel densities. In addition, Blend offers a platform menu that enablesyou to
designyourapp on differentscreen sizes and pixel densities on the fly. The Blend canvas then
updates dynamically based upon the chosen screen option.

Sample datashould be added to each page if you wantto easily view styling results and layout sizes
at designtime. This has the additional advantage of supporting the designer-developer workflow.

Preparing your pagesforlocalization can help yourapp reach more usersininternational markets.
It's importantto considerlocalization early onin the development process, as there are some issues
that will affect Ul elements across various locales. As you design your pages, keepin mind that users
have a wide range of abilities, disabilities, and preferences. If you incorporate accessible design
principlesintoyourpagesyou will help to ensure thatyourapp isaccessible to the widest possible
audience, thus attracting more customersto your app. For more info see Globalizing yourapp and

Design foraccessibility.

Deciding whetherto cache pages will be dependent upon how well-performing and responsive the
app is. Page cachingresultsin memory consumption forviews that are not currently displayed,
which wouldincrease the chance of termination when the appis suspended. However, without page
cachingit does mean that XAML parsing and construction of the page and its view model will occur
every time you navigate toa new page, which could have a performance impact fora complicated
page. For a well-designed page that does not use too many controls, the performance should be

http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx

57

sufficient. However, if you encounter slow page load times you should test to see if enabling page
cachingalleviatesthe problem. For more info see Quickstart: Navigating between pages.

Navigation within a Windows Store app can result from the user's interaction with the Ul or fromthe
app itself asa result of internal logic-driven state changes. Page navigation requests are usually
triggered froma view, with the navigation logiceitherbeingin the view's code -behind, orin the data
boundview model. While placing navigation logicin the view may be the simplest approach, itis not
easily testablethrough automated tests. Placing navigation logicin the view model classes means
that the navigation logiccan be exercised through automated tests. In addition, the view model can
thenimplementlogicto control navigation to ensure that certain business rules are enforced. For
instance, an app may not allow the userto navigate away from a page withoutfirst ensuring thatthe
entered datais correct.

Users will trigger navigation from aview by selecting a Ul control, with the navigation logicresiding
inthe appropriate view model class. For controls derived from ButtonBase, such as Button, you
should use commandstoimplement a navigation actionin the view model class. For controls that do
not derive from ButtonBase, you should use an attached behavior toimplement anavigation action
inthe view model class. Formore info see Using the Model-View-ViewModel (MVVM) pattern.

In general, you should use the top app bar for navigational elements that move the usertoa
different page and use the bottom app bar for commands that act on the current page. If every page
of yourapp isgoingto include atop app bar that allows the userto move to different pages, it does
not make sense toimplement this functionality individually on each page. Rather, the functionality
should be implemented as a user control that can be easily be included on each page. In addition,
you should follow placement conventions for commands on the bottom app bar. You should place
New/Add/Create buttons on the farright, with view switching buttons being placed on the farleft.
Also, youshould place Accept, Yes, and OK buttons to the left of Reject, No, and Cancel buttons. For
more infosee Guidelinesforapp bars.

The view classes that define your pages and the view model classes thatimplement the business
logicfor those pages can reside inthe same assembly or differentassemblies. Thatisadesign
decisiontobe made when architecting yourapp. A page type resolution strategy should be used to
navigate toa page inany assembly, regardless of the assembly from which the navigation request
originates.

One approach for specifyinga navigation targetisto use a navigation service, which would require
the type of the view to navigate to. Because a navigation serviceis usually invoked from view models
inorder to promote testability, this approach would requireview models to referenceviews (and
particularly views that the view model isn't associated with), which is not recommended. The
recommended approachisto use a string to specify the navigation target that can be easily passed
to a navigation service, and whichis easily testable.

http://msdn.microsoft.com/en-us/library/windows/apps/hh771188.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx

58

Creating pages and navigating between them in AdventureWorks Shopper

We used Blend and the Visual Studio XAML Designer to work with XAML because these tools make it
straightforward to quickly add and modify page layout. Blend was usefultoinitially define pages and
controls; we used Visual Studio to optimizetheirappearances. Thesetools also enabled us toiterate
quickly through design choices because they giveimmediate visual feedback. In many cases, our user
experience designerwas able toworkin parallel with the developers because changing the visual
appearance of a page does not affectits behavior. Formore info see Creating pages.

Pages were designed fora minimum resolution of 1024x768, and an optimal minimum resolution of
1366x768, in orderto supportall of the features of Windows 8, particularly multitasking with snap.
In addition, pages were designed tofill the screen forvarying screen sizes. Each page is able to adapt
to landscape and portrait orientations, and filland snap layouts. A consistent silhouette is
maintained across all pages, with some pagesincluding design time data. Page layout was tested on
a variety of devices, andin the Windows simulator. Pages maintain state when switching to and from
snap view, and possess feature parity across states. Formore info see Adding design time data,
Supporting portrait, snap, and fill layouts and Laying out an app page.

Page caching isnot usedinthe app. This prevents views that are not currently displayed from
consuming memory, which would increase the chance of termination when the appis suspended.All
pages are accessible, and support easy localization. For more info see Enabling page localization and
Enabling page accessibility.

In the app, the view classes thatdefine pages are in a different assembly to the view modelclasses
that implementthe business logicfor those pages. Therefore, a page type resolution strategy
implemented as a delegate is used to navigate to the pagesinthe AdventureWorks.Shopper
assembly when the navigation request originates from view modelclassesin the
AdventureWorks.UlLogicassembly. In addition, common page navigation functionality is
implemented as a user control that isembedded inthe top app bar foreach page. Both commands
and attached behaviors are used toimplement navigation actionsin view model classes, depending
on the control type. Navigation targets are specified by strings that represent the page to navigate
to. For more info see Navigating between pages, Handling navigation requests, and Invoking

navigation.

Creating pages

Pagesin Windows Store apps are user controls that support navigation and contain other controls.
All page classes are subtypes of the Windows.Ul.Xaml.Page class, and represent content that can be
navigated to by the user.

Whenyou add a new page to a project created from the Grid App (XAML) template, each pageis
derived fromthe Visual Studio's LayoutAwarePage class (except when you add a Blank Page, which
derivesfrom the Page class) that provides navigation, state management, and view management.
However, MVVMapps such as the AdventureWorks Shopper reference implementation should
derive each page from the VisualStateAwarePage class in the Microsoft.Practices.Prism.StoreApps

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx

library. The VisualStateAwarePage class provides view management and navigation support. The

following code example shows how the HubPage derives from the VisualStateAwarePage class.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<Infrastru
x:Clas
IsTabs
xmlns=
xmlns:
xmlns:
xmlns
xmlns:
xmlns:
xmlns:
xmlns:
xmlns:
x:Uid=
mc:Ign
Infras
d:Data
Is

cture:VisualStateAwarePage x:Name="pageRoot"
s="AdventureWorks.Shopper.Views.HubPage"

top="false"
"http://schemas.microsoft.com/winfx/2006/xaml/presentation”
x="http://schemas.microsoft.com/winfx/2006/xaml"
d="http://schemas.microsoft.com/expression/blend/2008"

:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

behaviors="using:AdventureWorks.Shopper.Behaviors"
views="using:AdventureWorks.Shopper.Views"
controls="using:AdventureWorks.Shopper.Controls"
designViewModels="using:AdventureWorks.Shopper.DesignViewModels"
Infrastructure="using:Microsoft.Practices.Prism.StoreApps"

"Page"

orable="d"

tructure:ViewModellocator.AutoWireViewModel="true"
Context="{d:DesignInstance designViewModels:HubPageDesignViewModel,
DesignTimeCreatable=True}">

Note The Microsoft.Practices.Prism.StoreApps library also provides the FlyoutView class, from

which all Flyout classes should derive inan MVVMapp.

59

There are twelve pagesinthe AdventureWorks Shopper reference implementation, with the pages
beingthe views of the MVVM pattern.

Page

View model

BillingAddressPage
CategoryPage
CheckoutHubPage
CheckoutSummaryPage
GroupDetailPage
HubPage
ltemDetailPage
OrderConfirmationPage
PaymentMethodPage
SearchResultsPage
ShippingAddressPage
ShoppingCartPage

BillingAddressPageViewModel
CategoryPageViewModel
CheckoutHubPageViewModel
CheckoutSummaryPageViewModel
GroupDetailPageViewModel
HubPageViewModel
ItemDetailPageViewModel
OrderConfirmationPageViewModel
PaymentMethodPageViewModel
SearchResultsPageViewModel
ShippingAddressPageViewModel
ShoppingCartPageViewModel

60

Data bindinglinks each page toits view model classinthe AdventureWorks Shopperreference
implementation. The viewmodel class gives the page access to the underlyingapp logicby using the
conventions of the MVVM pattern. For more info see Usingthe MVVM pattern.

Tip AdventureWorks Shopperusesthe MVVM pattern thatabstracts the userinterface forthe app.
With MVVM you rarely need to customize the code-behindfiles. Instead, the controls of the user
interface are bound to properties of a view model object. If page-related code isrequired, it should
be limitedto conveying datatoand fromthe page's view model object.

If you are interested in AdventureWorks Shopper'sinteraction modeland how we designed the user
experience, see Designing the AdventureWorks Shopper user experience.

Adding design time data

Whenyou create a data bound userinterface, you can display sample datain the visual designerto
view styling results and layout sizes. To display datain the designeryou mustdeclare itin XAML. This
isnecessary because the designer parsesthe XAMLfor a page but does notrun its code -behind. In
the AdventureWorks Shopper reference implementation, we wanted to display design timedatain
orderto supportthe designer-developer workflow.

Sample datacan be displayed at design time by declaringitin XAMLby usingthe various data
attributes from the designer namespace. This namespace is typically declared with a d: prefix, as
showninthe following code example.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

Attributes with d: prefixes are theninterpreted onlyatdesign time and are ignored at run time. For
example, in a CollectionViewSource the d:DesignSource attribute is used for design timesample
data, and the Source attribute is used for run time data.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<CollectionViewSource x:Name="groupedItemsViewSource"

Source="{Binding Path=RootCategories}"

d:DesignSource="{Binding RootCategories,
Source={d:DesignInstance
designViewModels:HubPageDesignViewModel,
IsDesignTimeCreatable=True}}"

IsSourceGrouped="true"

ItemsPath="Products" />

The d:Designinstance attribute indicates that the designtime source isadesignercreatedinstance
based on the HubPageDesignViewModel type. The IsDesignTimeCreateable settingindicates that
the designerwill instantiate that type directly, whichis necessary to display the sample data
generated by the type constructor.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.source.aspx

61

For more info see Data binding overview.

Supporting portrait, snap, and fill layouts

The AdventureWorks Shopper referenceimplementation was designed to be viewed full -screenin
landscape orientation. Windows Store apps must adapt to differentapplication view states,
including both landscape and portrait orientations. AdventureWorks Shopper supports
FullScreenLandscape, FullScreenPortrait, Filled, and Snapped layouts. AdventureWorks Shopper uses
the VisualState class to specify changes tothe visual display to support each layout. The
VisualStateManager class, used by the VisualStateAwarePage class, manages state and the logicfor
transitioning between states for controls. For example, here is the XAMLspecification of the layout
changes for the FullScreenPortraitlayout onthe hub page.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<VisualState x:Name="FullScreenPortrait">
<Storyboard>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="itemsGridView"
Storyboard.TargetProperty="Padding">
<DiscreteObjectKeyFrame KeyTime="0"
Value="96,0,10,56" />
</0ObjectAnimationUsingKeyFrames>
</Storyboard>
</VisualState>

We directly update individual properties for XAMLelements, in orderto specify changes to the visual
display. Forinstance, here the Storyboard specifies that the Padding property of the GridView
control named itemGridView will change toavalue 0f "96,0,10,56" when the view state changesto
portrait. However, you could update the Style property when you need to update multiple
propertiesorwhenthereisadefined style that does what you want. Although styles enable you to
control multiple properties and also provide a consistent appearance throughout your app,
providing too many can make your app difficult to maintain. Therefore, only use styleswheniit
makes sense to do so. For more info about styling controls, see Quickstart: styling controls.

Tip Whenyou developanappinVisual Studio, you can use the Windows Simulator debugger to test
layouts. Todo this, press F5 and use the debuggertool bar to debug with the Windows Simulator.
You can also use Blend to define and test layouts.

For more info see Adapting to differentlayouts.

Loading the hub page at runtime

The XAML Ul framework provides a built-in navigation model that uses Frame and Page elements
and works much like the navigationinaweb browser. The Frame control hosts Pages, and has a
navigation history thatyou can use to go back and forward through pages you've visited. You can
also pass primitive type data between pages as you navigate. Inthe Visual Studio project templates,
a Frame named rootFrame is set as the content of the app window.

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.media.animation.storyboard.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.control.padding.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.style.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465045.aspx#ADAPTING_TO_DIFFERENT_LAYOUTS
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx

62

When the AdventureWorks Shopperreferenceimplementation starts up, and after the
bootstrapping process has completed, the OnLaunchApplication method of the App class navigates
to the app's hub page, provided thatthe app hasn'tbeenlaunched from a secondary tile.

ADVENTURE

WORKS

A
A
o
- i N
+

$539.99

Road-750 Black, 52 HL Mountain Frame

Entry level adult bile; offers a.. Each frame i hand-crafte
-
4t

$577.12 $22é.49 $44.54

Maountain-400-W Red, 42 HL Fork LL Mountain Hamdle

Thiz bike delivers a high-level of performance on a budget. it i responsive and. High-performance carbon road fork.. All-purpase bar for on ar

The App class derives from the MvvmAppBase class in the Microsoft.Practices.Prism.StoreApps
library that inturn derives from the Windows.Ul.Xaml.Application class and overrides the
OnlLaunched method. The OnLaunched method override calls the OnLaunchApplication method in
the App class, whichisshownin the following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override void OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{
// The app was launched from a Secondary Tile
// Navigate to the item's page
NavigationService.Navigate("ItemDetail", args.Arguments);
}
else
{
// Navigate to the initial page
NavigationService.Navigate("Hub", null);
}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx

63

This code example shows how AdventureWorks Shopper calls the Navigate method of the
NavigationService object toload contentthat is specified by the page type. The OnLaunched
method override in the MvvmAppBase class only calls the OnLaunchApplicationif the Frame
instance's Content propertyis null, as a way of determining whetherthe appisresumingfroma
previous state orstartinginits default navigation state. For more info about resuming from previous
states see Handling suspend, resume and activation. For more info about navigation between pages

see Navigating between pages.

Styling controls

AdventureWorks Shopper's appearance was customized by styling and templating the controls used
inthe app. Styles enable you to set control properties and reuse those settings fora consistent
appearance across multiple controls. Styles are defined in XAMLeitherinline fora control, or as a
reusable resource. Resources can be defined at the page level, app level, orin a separate resource
dictionary. Aresource dictionary can be shared across apps, and an app can use multiple resource
dictionaries. For more info see Quickstart: styling controls.

The structure and appearance of a control can be customized by defininganew ControlTemplate for
the control. Templating a control can be usedto avoid havingto write a custom control. For more
information, see Quickstart: control templates. An example of thisin AdventureWorks Shopperis
the FormFieldTextBox control that derives from the TextBox control and adds a Watermark
propertytoit.

Overriding built-in controls

On the hub page we wanted the first product to be displayed at twice the dimensions of the other
products.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.contentproperty.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.controltemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465374.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

64

ADVENTURE

WORKS

$539.99 $1364.50
Road-750 Black, 52 HL Mountain Frame

Entry kewve| adult bace; offers a.. Exch frame & hand-crafte

\

$577.12 $229.49

Mountain-400-W Red, 42 HL Fark LL Mountain Handle

This bike delivers a high-level of performance on a budget. it & responsive and. High-performance carbon road fork.. Mll-purpase bar for onar

To do this we defined a new class named MultipleSizedGridView that derives from the GridView
control. We then overrode the PrepareContainerForltemOverride method to enable the first

product to span multiple rows and columns of the MultipleSizedGridView, as shown in the following
code example.

C#: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs

protected override void PrepareContainerForItemOverride(DependencyObject element,
object item)
{

base.PrepareContainerForItemOverride(element, item);
var dataltem = item as ProductViewModel;

if (dataItem != null && dataltem.ItemPosition == 9)

{
_colval = (int)LayoutSizes.PrimaryItem.Width;
_rowVal = (int)LayoutSizes.PrimaryItem.Height;

}

else

{
_colval = (int)LayoutSizes.SecondaryItem.Width;
_rowVal = (int)LayoutSizes.SecondaryItem.Height;

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx

65

var uiklement = element as UIElement;
VariableSizedWrapGrid.SetRowSpan(uiElement, _rowVal);
VariableSizedWrapGrid.SetColumnSpan(uiElement, _colVval);

The PrepareContainerForltemOverride method gets the firstitem in the MultipleSizedGridView and
setsit to spantwo rowsand two columns, with subsequentitems occupying one row and one

column. The static LayoutSizes class simply defines two Size objects that specify the number of rows
and columnstospan forthe firstitem, and subsequentitemsin the MultipleSizedGridView,
respectively.

C#: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs

public static class LayoutSizes

{
public static Size PrimaryItem
{
get { return new Size(2, 2); }
}
public static Size SecondaryItem
{
get{return new Size(1, 1); }
}
}

Enabling page localization

Preparingforinternational markets can help you reach more users. Globalizing yourapp provides
guidelines, checklists, and tasks to help you create a user experience that reaches more users by

helpingyouto globalize and localize each page of your app. It's important to considerlocalization
earlyoninthe development process, asthere are some issues that will effect userinterface
elements across various locales. Here's the tasks that we carried out to support page localizationin
the AdventureWorks Shopperreference implementation.

e Separate resources foreachlocale.

e Ensurethat each piece of textthatappearsinthe Ul isdefined by astringresource.
e Addcontextual commentstothe app resourcefile.

o Definethe flow directionforall pages.

e Ensure error messages are read from the resource file.

Separateresources foreachlocale

We maintain separate solution folders foreach locale. Forexample, Strings ->en-US->
Resources.resw defines the strings forthe en-US locale. For more info see Quickstart: Using string

resources, and How to name resources using qualifiers.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.size.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx

66

Ensure that each piece of text that appearsin the Ul is defined by a stringresource

We usedthe x:Uid directive to provide aunique name forthe localization process to associate
localized strings with textthatappears onscreen. The following example shows the XAML that

definesthe apptitle thatappearsonthe hub page.

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<TextBlock x:Uid="ShoppingCartTitle"
x:Name="pageTitle"
Text="Shopping Cart"
Grid.Column="1"
TextTrimming="WordEllipsis"
Style="{StaticResource PageHeaderTextStyle}" />

For the en-USlocale, we define ShoppingCartTitle.Textin the resource fileas "Shopping Cart." We
specify the .Text part so that the XAML runtime will override the Text property of the TextBlock
control with the value fromthe resource file. We also use this technique to set Button content
(ContentControl.Content).

Add contextual comments to the app resource file

Commentsinthe resource file provide contextualinformation that helps localizers more accurately
translate strings. Formore info see How to prepare forlocalization.

Define the flow direction for all pages

We define the Page.FlowDirection propertyinthe stringresourcesfileto setthe flow direction for
all pages. For languages that use left-to-right reading order, such as English or German, we define

"LeftToRight" asitsvalue. Forlanguagesthat read right-to-left, such as Arabicand Hebrew, you
define thisvalue as "RightTolLeft". We also defined the flow direction forall app bars by defining
AppBar.FlowDirection in the resource files.

Ensure error messages areread from the resource file

It's importantto localize error messages strings, including exception message strings, because these
strings will appeartothe user. The AdventureWorks Shopper reference implementation uses an
instance of the ResourceLoaderAdapter class to retrieve error messages from the resource file for
your locale. This class uses aninstance of the ResourceLoader class to load strings from the resource
file. When we provide an error message when an exceptionis thrown, we use the
ResourceLoaderAdapterinstance toread the message text. The following code example shows how
the SubmitOrderTransactionAsync method in the CheckoutSummaryPageViewModel class uses the

ResourceLoaderAdapterinstance to retrieve error message strings from the resource file.

http://msdn.microsoft.com/en-us/library/windows/apps/hh758297.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.text.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.content.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.flowdirection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

67

C#: AdventureWorks.UILogic\ViewModels\CheckoutSummaryPageViewModel.cs

catch (ModelValidationException mvex)

{
errorMessage = string.Format(CultureInfo.CurrentCulture,
_resourcelLoader.GetString("GeneralServiceErrorMessage"),
Environment .NewLine, mvex.Message);
}
if (!string.IsNullOrWhiteSpace(errorMessage))
{
await _alertMessageService.ShowAsync(errorMessage,
_resourcelLoader.GetString("ErrorProcessingOrder™));
}

This code displays an exception error message to the user, if a ModelValidationException occurs
when submittingan order. Forthe en-US locale, the "GeneralServiceErrorMessage" string is defined
as "The following error messages were received from the service: {0} {1}," and the
"ErrorProcessingOrder" stringis defined as "There was an error processing your order." Other
locales would have messages that convey the same error message.

Note When creatingan instance of the ResourceLoader class that uses strings that are definedina
classlibrary and not inthe executable project, the ResourceLoader class hasto be passed a path to
the resourcesinthe library. The path must be specified as /project name/Resources/ (forexample,
/Microsoft.Practices.Prism.StoreApps/Strings/).

You can testyour app's localization by configuring the list of preferred languages in Control Panel.
For more info aboutlocalizing yourapp and makingit accessible, see How to prepare forlocalization,
Guidelines and checklist forapplication resources, and Quickstart: Translating Ul resources.

Enabling page accessibility

Accessibility is about making yourapp usable by people who have limitations thatimpede or prevent
the use of conventional userinterfaces. This typically means providing support for screen readers,
implementing keyboard accessibility, and supporting high-contrast themes.

Accessibility support for Windows Store apps written in C# comes from the integrated support for
the Microsoft Ul Automation framework thatis presentinthe base classesand the built-in behavior
of the class implementation for XAML control types. Each control class uses automation peersand
automation patterns that report the control's role and contentto Ul automation clients. If you use
non-standard controls you will be responsible for making the controls accessible.

http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967766.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965329.aspx

68

Here are the tasks that we carried out to support page accessibility in the AdventureWorks Shopper
reference implementation:

e Setthe accessible name foreach Ul element. An accessible name isashort, descriptive text
stringthat a screen readerusesto announce aUl element. Forexample, in AdventureWorks
Shopper XAMLcontrols specify AutomationProperties.Automationld and
AutomationProperties.Name attached properties to make the control accessibleto screen
readers.

XAML: AdventureWorks.Shopper\Views\ItemDetailPage.xaml

<FlipView x:Name="flipView"
AutomationProperties.AutomationId="ItemsFlipView"
AutomationProperties.Name="Item Details"
TabIndex="1"
Grid.Row="1"
ItemsSource="{Binding Items}"
SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}"
SelectedItem="{Binding SelectedProduct, Mode=TwoWay}">

For more info see Exposing basicinformation about Ul elements.

e Overriddenthe ToString method of the ShippingMethod, ProductViewModel,
CheckoutDataViewModel, and ShoppingCartitemViewModel classesin orderto support
Windows Narrator. When instances of these classes are bound to the view they are styled
using data templates, but Windows Narrator uses the result of the ToString overrides.

e Implemented keyboard accessibility. Ensure that the tab order of controls corresponds to

the visual order of controls, and that Ul elements that can be clicked can also be invoked by
usingthe keyboard. Formore info see Implementing keyboard accessibility.

e Visuallyverified the Ul to ensure that the text contrast isappropriate, and that elements
render correctly in high-contrast themes. For more info see Meeting requirements for
accessible text and Supporting high contrast themes.

e Ran accessibility tools to verify the screen reading experience. For more info see Testing
your app for accessibility.

e Ensuredthat the app manifestfollows accessibility guidelines. For more info see Making tiles
accessible.

For more info see Making your app accessible.

Navigating between pages

Navigation within a Windows Store app can result from the user's interaction with the Ul or fromthe
app itself asa result of internal logic-driven state changes. Navigation usually involves moving from
one page to anotherpage in the app. Insome cases, the app may implement complex logicto
programmatically control navigation to ensure that certain business requirements are enforced. For

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.automationid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.name.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868160.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj155763.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj155763.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452678.aspx

69

example, the app may notallow the userto navigate away from a page withoutfirst ensuringthat
the entered datais correct.

The AdventureWorks Shopper referenceimplementation typically triggers navigation requests from
userinteractioninthe views. These requests could be to navigate to a particularview or navigate
back to the previousview. Insome scenarios, forexample if the app needs to navigate toa new view
when a command completes, the viewmodel willneed to send amessage to the view. In other
scenarios, you might wantto triggerthe navigation request directly from the viewwithout involving
the view model directly. Whenyou're usingthe MVVMpattern, you want to be able to navigate
without usingany code-behindinthe view, and withoutintroducing any dependency on the view
implementation in the view model classes.

The INavigationAware interface, provided by the Microsoft.Practices.Prism.StoreApps library, allows

an implementing class to participate in a navigation operation, andisimplemented by view models
classes. The interface defines two methods, as shownin the following code example.

C#: Microsoft.Practices.Prism.StoreApps\INavigationAware.cs

public interface INavigationAware

{
void OnNavigatedTo(object navigationParameter, NavigationMode navigationMode,
Dictionary<string, object> viewModelState);
void OnNavigatedFrom(Dictionary<string, object> viewModelState,
bool suspending);
}

The OnNavigatedFrom and OnNavigatedTo methods are called during a navigation operation. If the
view model class forthe page being navigated from implements thisinterface, its OnNavigatedFrom
methodis called before navigation takes place. The OnNavigatedFrom method allows the page to
save any state beforeitisdisposed of. If the view modelclass forthe page being navigated to
implementsthisinterface, its OnNavigatedTo method is called after navigationis complete. The
OnNavigatedTo method allows the newly displayed page toinitialize itselfby loading any page state,
and by using any navigation parameters passed toit. For example, the OnNavigatedTo methodin
the ItemDetailPageViewModel class accepts a product numberas a parameterthat is used to load
the product information for display on the ItemDetailPage.

The ViewModel base class implements the INavigationAware interface, providing virtual
OnNavigatedFrom and OnNavigatedTo methods that save and load view model state, respectively.
This avoids each view model class having toimplement this functionality to support the suspend and
resume process. The view model classes for each page derive fromthe ViewModel class. The
OnNavigatedFrom and OnNavigatedTo methods canthen be overriddeninthe viewmodel class for
the page if any additional navigation logicis required, such as processing anavigation parameter
that has been passed tothe page.

70

Note The OnNavigatedFrom and OnNavigatedTo methodsinthe ViewModel base class control
loading and saving page state during navigation operations. For more info see Handling suspend,
resume, and activation.

Handling navigationrequests

Navigationis performed using the FrameNavigationService class. This class, which implements the
INavigationService interface, uses the Frame instance created in the InitializeFrameAsync method
inthe MvvmAppBase class to perform the navigation requestforthe app. The MvvmAppBase class
createsan instance of the FrameNavigationService class by calling the CreateNavigationService
method, which is shownin the following code example.

Note Usingthe Frame instance ensures thatthe correct navigation stackis maintained forthe app,
so that navigating backwards works the way users expect.
C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private INavigationService CreateNavigationService(IFrameFacade rootFrame,
ISessionStateService sessionStateService)

{
var navigationService = new FrameNavigationService(rootFrame, GetPageType,
sessionStateService);
return navigationService;
}

The CreateNavigationService method creates aninstance of the FrameNavigationService class,
which takes the GetPageType delegatetoimplement a page type resolution strategy. This strategy
assumes thatthe views that define pages are in the AdventureWorks.Shopperassembly and that the
view names end with "Page".

Aftercreating the instance of the FrameNavigationService class the MvvmAppBase class calls the
Onlnitialize overridein the App class to registerservice instances with the Unity dependency
injection container. When view model classes are instantiated, the containerwill inject the
dependencies that are required including the FrameNavigationService instance. View models can
theninvoke the Navigate method on the FrameNavigationService instance to cause the app to
navigate toa particularview inthe app or the GoBack method toreturnto the previousview. The
following code example shows the Navigate method inthe FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

public bool Navigate(string pageToken, object parameter)

{
Type pageType = _navigationResolver(pageToken);

if (pageType == null)
{
var resourcelLoader =
new ResourcelLoader(Constants.StoreAppsInfrastructureResourceMapld);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

71

var error = string.Format(CultureInfo.CurrentCulture,
resourceLoader.GetString(
"FrameNavigationServiceUnableResolveMessage"), pageToken);
throw new ArgumentException(error, "pageToken");

// Get the page type and parameter of the last navigation to check if we

// are trying to navigate to the exact same page that we are currently on

var lastNavigationParameter =
_sessionStateService.SessionState.ContainsKey(LastNavigationParameterkey)
? _sessionStateService.SessionState[LastNavigationParameterKey] : null;

var lastPageTypeFullName =
_sessionStateService.SessionState.ContainsKey(LastNavigationPageKey) ?
_sessionStateService.SessionState[LastNavigationPageKey] as string :
string.Empty;

if (lastPageTypeFullName != pageType.FullName ||
IAreEquals(lastNavigationParameter, parameter))

return _frame.Navigate(pageType, parameter);

}

return false;

The Navigate method accepts a string parameterthat represents the page to be navigated to, and a
navigation parameterthatrepresents the datato passto the page being navigated to. Any data
being passedtothe page being navigated towill be received by the OnNavigatedTo method of the
view model class forthe page type. A null value is used as the navigation parameterif no data needs
to be passedto the page being navigated to.

Placing the navigation logicin view model classes means that the navigation logic can be exercised
through automated tests. Inaddition, the view model canthenimplement logicto control navigation
to ensure that certain business rules are enforced. Forinstance, an app may notallow the userto
navigate away from a page withoutfirstensuringthatthe entered datais correct.

Invoking navigation

Navigationis usually triggered from aview by a useraction. For instance, each page inthe app has a
top app bar which contains ButtonBase-derived controls that allow the userto navigate to the hub
page and the shopping cart page. Ratherthan implementthis functionality separately on each page,
itisimplemented as a user control named TopAppBarUserControl that is added to each page. The
following code example shows the Button controls from the TopAppBarUserControl that allow the
userto navigate tothe hub page and the shoppingcart page.

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Height="125"

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

72

Margin="0,15,0,0">

<Button x:Name="HomeAppBarButton" x:Uid="HomeAppBarButton"
AutomationProperties.AutomationId="HomeAppBarButton"
Command="{Binding HomeNavigationCommand}"
Margin="5,0"
Style="{StaticResource HouseStyle}"
Content="Home"
Height="125"/>

<Button x:Uid="ShoppingCartAppBarButton” x:Name="ShoppingCartAppBarButton"
AutomationProperties.AutomationId="ShoppingCartAppBarButton"
Command="{Binding ShoppingCartNavigationCommand}"
Margin="0,0,5,0"
Height="125"
Style="{StaticResource CartStyle}"
Content="Shopping Cart" />

</StackPanel>

In this scenario, navigationis triggered from one of the ButtonBase-derived controls by invokinga
commandin the TopAppBarUserControlViewModel class. Forinstance, executing the
ShoppingCartNavigationCommand causes the app to navigate to the ShoppingCartPage, and so the
navigationisinitiated from the view model. The following code example shows how the
TopAppBarUserControlViewModel constructor defines the ShoppingCartNavigationCommand
property to be an instance of the DelegateCommand class that will invoke the navigation.

C#: AdventureWorks.UlLogic\ViewModels\TopAppBarUserControlViewModel.cs

public TopAppBarUserControlViewModel(INavigationService navigationService)

{

HomeNavigationCommand = new DelegateCommand(() =>
navigationService.Navigate("Hub", null));

ShoppingCartNavigationCommand = new DelegateCommand(() =>
navigationService.Navigate("ShoppingCart", null));

}

public DelegateCommand HomeNavigationCommand { get; private set; }
public DelegateCommand ShoppingCartNavigationCommand { get; private set; }

For controls that do not derive from ButtonBase, you can use an attached behaviortoimplementa
navigationactioninthe view model class. Forinstance, whenthe userselectsaproductonthe
HubPage, they are taken to the ItemDetailPage. This functionality is provided by the
ListViewltemClickedToAction attached behavior, which enables the ItemClick event of the GridView
control to be handledinaview model, ratherthanin the page's code -behind.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

73

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<controls:MultipleSizedGridView x:Name="itemsGridView"
AutomationProperties.AutomationId="HubPageItemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0,-3,0,0"
Padding="116,0, 40, 46"
ItemsSource="{Binding Source={StaticResource groupedItemsViewSource}}"
ItemTemplate="{StaticResource AWShopperItemTemplate}"
SelectionMode="None"

ScrollViewer.IsHorizontalScrollChainingEnabled="False"

IsItemClickEnabled="True"

behaviors:ListViewItemClickedToAction.Action=
"{Binding ProductNavigationAction}">

The ListViewltemClickedToAction behavior binds the ItemClick event of the GridView to the
ProductNavigationAction property in the HubPageViewModel class. So when a GridViewltem s
selected the ProductNavigationAction is executed thatinturn calls the NavigateToltem method to
navigate from the HubPage to the ItemDetailPage.

C#: AdventureWorks.UlLogic\ViewModels\HubPageViewModel.cs

private void NavigateToItem(object parameter)

{
var product = parameter as ProductViewModel;
if (product != null)
{
_navigationService.Navigate("ItemDetail", product.ProductNumber);
}
}

For more infosee Ul interaction using the DelegateCommand class and attached behaviors.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

74

Using touch in AdventureWorks Shopper (Windows Store business
apps using C#,XAML, and Prism)

Summary

e When possible, use the standard touch gestures and controls that Windows 8 provides.
e Providevisual feedback when atouch interaction occurs.

e Use data bindingto connect standard Windows controlsto the view models thatimplement
the touch interaction behavior.

Part of providinga great userexperience is ensuringthat an app is accessible and intuitive to use on
a traditional desktop computerand ona small tablet. For the AdventureWorks Shopper reference
implementation we puttouch at the forefront of our user experience planning because itadds an
importantexperience by providinga more engaginginteraction between the userand the app.
AdventureWorks Shopper provides tap, slide, pinch, and swipe gestures. Databindingis usedto
connectstandard Windows controls that use touch gestures tothe view models thatimplement
those gestures.

You will learn

e How the Windows 8 touch language was usedin AdventureWorks Shopper.
¢ How the Windows Runtime supports non-touch devices.

Applies to

e Windows Runtime for Windows 8
o« CH#
¢ Extensible Application Markup Language (XAML)

Making key decisions

Touch interactionsin Windows 8 use physical interactions to emulate the direct manipulation of Ul
elements and provideamore natural, real-world experience when interacting with those elements
on the screen. The followinglist summarizes the decisions to make when implementing touch
interactionsinyourapp:

e Doesthe Windows 8 touch language provide the experience yourapp requires?

¢ What size should yourtouch targets be?

¢ Whendisplayingalistofitems, do the touch targetsfor each itemneedto be identically
sized?

e Shouldyou provide feedback to touchinteractions?

e Shouldtouchinteractions be reversible?

¢ How longshouldatouch interaction last?

e Whenshouldyou use staticgestures versus manipulation gestures?

e Doyouneedto designandimplementacustominteraction?

75

o Doesthe custom interactionrequirespecifichardware supportsuch as a minimum
number of touch points?
o How will the custominteraction be provided onanon-touch device?

Windows 8 provides a concise set of touch interactions that are used throughout the system.
Applyingthislanguage consistently makes yourapp feel familiarto what users already know,
increasing user confidence by makingyourapp easierto learn and use. Most apps will notrequire
touch interactions that are not part of the Windows 8 touch language. Formore info see Touch
interaction design.

There are no definitive recommendations forhow large a touch target should be or where it should
be placed withinyourapp. However, there are some guidelines that should be followed. The size
and targetarea of an object depend on various factors, including the userexperiencescenarios and
interaction context. They should be large enough to supportdirect manipulation and providerich
touch interaction data. Itis acceptable in some userexperience scenarios fortouch targetsina
collection of items to be differentsizes. Forinstance, when displaying a collection of products you
could choose to display some products at a larger size than the majority of the collection, inorderto
draw attention to specificproducts. Touch targets should react by changing color, changingsize, or
by moving. Non-moving elements should return to their default state when the userslides or lifts
theirfingeroff the element. Inaddition, touch interactions should be reversible. You can make your
app safe to explore using touch by providing visual feedback to indicate what will happen when the
userlifts theirfinger. For more info see Guidelines fortargeting and Guidelines forvisual feedback.

Touch interactions that require compound or custom gestures need to be performed withina
certainamount of time. Try to avoid timedinteractions like these because they can often be
triggered accidentally and can be difficult totime correctly. For more info see Responding to user

interaction.

Staticgestures events are triggered afteraninteractionis complete and are used to handle single-
fingerinteractions such as tapping. Manipulation gesture eventsindicatean ongoinginteraction and
are used fordynamicmulti-touch interactions such as pinching and stretching, and interactions that
useinertiaandvelocity datasuch as panning. This data is then used to determine the manipulation
and performthe interaction. Manipulation gesture events startfiringwhen the usertouchesthe
elementand continue until the userlifts theirfinger orthe manipulationis cancelled. For more info
see Gestures, manipulations, and interactions.

Only create a custom interactionandif there is a clear, well-defined requirement and no interaction
from the Windows 8touch language can supportyourscenario. If an existinginteraction provides
the experience your app requires, adapt yourapp to supportthat interaction. If youdoneedto
designandimplementacustominteraction you will need to consider yourinteraction experience. If
the interaction depends onitems such as the number of touch points, velocity, and inertia, ensure
that these constraints and dependencies are consistentand discoverable. Forexample, how users
interpretspeed can directly affect the functionality of yourapp and the users satisfaction with the
experience. Inaddition, youwillalso have to design and implement an equivalent version of the
interaction fornon-touch devices. Formore info see Responding to userinteraction.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj883700.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx

76

Important To avoid confusing users, do not create custominteractions that duplicate orredefine
existing, standard interactions.

Touch in AdventureWorks Shopper

As previously described in Designing the UX, touch is more than simply an alternativeto usinga
mouse. We wanted to make touch an integrated part of the app because touch can add a personal

connection between the userandthe app. Touch isalso a natural way to enable users to browse and
select products. In addition, we use SemanticZoom to highlight how levels of related complexity can
easily be navigated. With SemanticZoom users can easily visualize high level content such as
categories, and then zoominto those categories toview category items.

The AdventureWorks Shopper referenceimplementation uses the Windows 8touch language. We
use the standard touch interactions that Windows provides forthese reasons:

e The Windows Runtime provides an easy way to work with them.

e We don'twant to confuse users by creating custominteractions.

e We wantusersto use the interactionsthatthey already know to explore the app, and not
needtolearn newinteractions.

We alsowanted AdventureWorks Shopperto be intuitive for users who use amouse or similar
pointing device. The built-in controls work as well with amouse or other pointing deviceas they do
with touch. So whenyoudesignfortouch, you also get mouse and pen functionality. For example,
you can use the left mouse button toinvoke commands. In addition, mouse and keyboard
equivalents are provided for many commands. Forexample, you can use the right mouse button to
activate the app bar, and holding the Ctrl key down while scrollingthe mouse wheel controls
SemanticZoom interaction. For more info see Guidelines forcommon userinteractions.

The document Touch interaction design explains the Windows 8touch language. The following
sections describe how we applied the Windows 8touch language in AdventureWorks Shopper.

Tap for primary action

Tappingan elementinvokes its primary action. Forexample, onthe GroupDetailPage, youtapona
product to navigate to the ItemDetailPage. The following diagram shows an example of the tap for
primary action gesture in the AdventureWorks Shopper reference implementation.

http://msdn.microsoft.com/en-us/library/windows/apps/jj883702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

Mountain Bikes

~

Mountain-500 Red, 40

$564.99

Mountain-500 Red, 42

$564.99

Mountain-500 Red, 44

$564.99

Mountain-500 Red, 48

Mountain-500 Black,

40
$539.99

Mountain-500 Black,

42
$539.99

Mountain-500 Black

A

$539.99

Mountain-500 Black,

77

$564.99 48
$539.99

Mountain-500 Red, 52 Mountain-500 Black,

$564.99

$539.99

®© Product Details

Mountain-500 Red, 40
$564 99

Products are displayed on the GroupDetailPage in a GridView control. A GridView displays a
collection ofitemsin ahorizontal grid. The GridView control is an IltemsControl class, soit can

containa collection of items of any type. A benefit of using the GridView control isthatit hastouch
capabilities builtin, removing the need foradditional code.

To populate a GridView you can add objects directly toits Items collection or bind its ltemsSource
propertyto a collection of dataitems. Whenyou additemstoa GridView they are automatically
placedin a GridViewltem containerthat can be styled to change how an itemisdisplayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

78

XAML: AdventureWorks.Shopper\Views\GroupDetailPage.xaml

<GridView Grid.Row="1"
x:Name="itemsGridView"
AutomationProperties.AutomationId="ItemsGridView"
AutomationProperties.Name="Items In Category"
TabIndex="1"
Margin="0,-14,0,0"
Padding="120,0,120,50"
ItemsSource="{Binding Items}"
ItemTemplate="{StaticResource ProductTemplate}"
SelectionMode="None"
IsItemClickEnabled="True"
behaviors:ListViewItemClickedToAction.Action=
"{Binding ProductNavigationAction}">
<GridView.ItemsPanel>
<ItemsPanelTemplate>
<WrapGrid Loaded="wrapGrid_Loaded" />
</ItemsPanelTemplate>
</GridView.ItemsPanel>
</GridView>

The ItemsSource property specifies that the GridView will bind to the Items property of the
GroupDetailPageViewModel class. The Items propertyisinitialized to a collection of type
ProductViewModel when the GroupDetailPage is navigated to.

The appearance of individual itemsin the GridView is defined by the ltemTemplate property. A
DataTemplate is assigned to the ItemTemplate property that specifies thateachiteminthe
GridView will display the product subtitle, image, and description.

Whena user clicksan iteminthe GridView the app navigates tothe ItemDetailPage. This behavioris
enabled by setting the SelectionMode property to None, setting the IsltemClickEnabled property to

true, and handlingthe ItemClick event. The GridView uses an attached behavior named
ListViewltemClickedToAction that enables the ItemClick event to be handled in a view model,
rather thanin the page's code-behind. The behaviorbinds the ItemClick event to the
ProductNavigationAction property in the GroupDetailPageViewModel class.

In the GroupDetailPageViewModel constructor, the ProductNavigationAction propertyisinitialized
to the NavigateToProduct method. This method navigates to the ItemDetailPage, and passesina
specificproduct numbertothe page for loading.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isitemclickenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

79

C#: AdventureWorks.UILogic\ViewModels\GroupDetailPageViewModel.cs

private void NavigateToProduct(object parameter)

{
var product = parameter as ProductViewModel;
if (product != null)
{
_navigationService.Navigate("ItemDetail"”, product.ProductNumber);
}
}

The overall effectis thatwhen a GridViewltemis clicked on the ProductNavigationActionis
executed and navigates to the ItemDetailPage to display detailed productinformation. For more
info about behaviors see Implementing behaviors to supplement the functionality of XAML

elements.

For more info see Adding ListView and GridView controls.

Slide to pan

The slide gesture is primarily used for panninginteractions. Panningis atechnique for navigating
short distances oversmall sets of content within asingle view. Panningis only necessary when the
amount of contentinthe view causesthe contentareato overflow the viewable area. Formore info
see Guidelinesforpanning. One of the uses of the slide gesture inthe AdventureWorks Shopper

reference implementationisto pan among productsina category. For example, when you browseto
a product, you can use the slide gesture to navigate to the previous or next productin the
subcategory. The following diagram shows an example of the slide to pan gesture in
AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780618.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx

80

Product Details

Mountain-500 Red, 52

$564.99

Tokkok ok

P
4
.

Product Details

Mountain-500 Black, 40

12 Reviews:

Ullamcorper F

In AdventureWorks Shopper this gesture isimplemented by the FlipView control. The FlipView
control displaysacollection of items, and lets you flip through them one at a time. The FlipView
control is derived fromthe ItemsControl class, likethe GridView control, and so it shares many of
the same features. A benefit of using the FlipView control is thatit has touch capabilities builtin,
removingthe need foradditional code.

To populate a FlipView you can add objects directly toits Iltems collection or bind its ltemsSource
property to a collection of dataitems. Whenyou additemstoa FlipView they are automatically
placedina FlipViewltem container that can be styled to change how an itemis displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipviewitem.aspx

81

XAML: AdventureWorks.Shopper\Views\ItemDetailPage.xaml

<FlipView x:Name="flipView"
AutomationProperties.AutomationId="ItemsFlipView"
AutomationProperties.Name="Item Details"
TabIndex="1"
Grid.Row="1"
ItemsSource="{Binding Items}"
SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}"
SelectedItem="{Binding SelectedProduct, Mode=TwoWay}">

The ItemsSource property specifies thatthe FlipView binds to the Items property of the
ItemDetailPageViewModel class, which is a collection of type ProductViewModel.

For more info see Quickstart: Adding FlipView controls, How to add a flip view, Guidelines and
checklistfor FlipViewcontrols.

Swipe to select, command, and move

With the swipe gesture,youslide yourfinger perpendicularto the panning direction to select
objects. The ability to use the swipe gesture depends upon the value of the SelectionMode property
on the ListView or GridView control. Avalue of None indicates thatitem selectionis disabled, while
avalue of Single indicates that single items can be selected using this gesture.

In the AdventureWorks Shopperreference implementation, the swipe gesturecan be usedto select
items on the ChangeDefaultsFlyout, the CheckoutSummaryPage, and the ShoppingCartPage. When
an itemisselected onthe ShoppingCartPage the bottom app bar appears with the app bar
commands applyingto the selected item. The following diagram shows an example of the swipe to
select, command, and move gesture in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh781233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj150601.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx

82

(@)

Shopping Cart

® Shopping Cart

$120.00 1m0

The IsSwipeEnabled property of the GridView control indicates whetheraswipe gesture isenabled
for the control. Setting IsSwipeEnabled to false disables some default touch interactions, soit
should be setto true whenthese interactions are required. Forexample, when IsSwipeEnabled is

false:

¢ Ifitemselectionisenabled, ausercandeselectitems by right-clicking with the mouse, but
cannot deselectan item with touch by usingthe swipe gesture.

e If CanDragltems istrue, a usercan drag items with the mouse, but not with touch.

e IfCanReorderltemsis true, a user can reorderitems with the mouse, but not with touch.

The AdventureWorks Shopperreferenceimplementation does not explicitly set the IsSwipeEnabled
property, asits defaultvalue is true. The following code example shows how anitem on the
ShoppingCartPage can be selected with the swipe gesture.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.candragitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.canreorderitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx

83

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<GridView x:Name="ShoppingCartItemsGridView"
x:Uid="ShoppingCartItemsGridView"
AutomationProperties.AutomationId="ShoppingCartItemsGridView"
SelectionMode="Single"
Width="Auto"
Grid.Row="2"
Grid.Column="1"
Grid.RowSpan="3"
VerticalAlignment="Top"
ItemsSource="{Binding ShoppingCartItemViewModels}"
SelectedItem="{Binding SelectedItem, Mode=TwoWay}"
ItemTemplate="{StaticResource ShoppingCartItemTemplate}"
Margin="0,0,0,0" />

The Selectedltem property of the GridView control can be used to retrieve the item selected by the
swipe gesture. Here the Selectedltem property performs atwo-way binding to the Selecteditem
property of the ShoppingCartPageViewModel class, whichis showninthe following code example.

C#: AdventureWorks.UILogic\ViewModels\ShoppingCartPageViewModel.cs

public ShoppingCartItemViewModel SelectedItem

{
get { return _selectedItem; }
set
{
if (SetProperty(ref _selectedItem, value))
{
if (_selectedItem != null)
{
// Display the AppBar
IsBottomAppBarOpened = true;
IncrementCountCommand.RaiseCanExecuteChanged();
DecrementCountCommand .RaiseCanExecuteChanged();
}
else
{
IsBottomAppBarOpened = false;
}
}
}
}

When the Selecteditem propertyis set the IsBottomAppBarOpened property will be setto control
whetherornot to display the bottom app bar.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.selector.selecteditem.aspx

84

Pinch and stretch to zoom

Pinch and stretch gestures are not just for magnification, or performing opticalzoom. The
AdventureWorks Shopperreference implementation uses SemanticZoomto help users navigate
between large sets of data. SemanticZoom enables you to switch between two different views of
the same content. You typically have amain view of yourcontentand a second view that allows
usersto quickly navigate through it. Users can pan or scroll through categories of content, and then
zoomintothose categoriestoview detailed information. The following diagram shows an example
of the pinch and stretch to zoom gesture in AdventureWorks Shopper.

f ADVENTURE
ANWORIS

$1364.50

$577.12

Mowta®n 390 W Red. £2 HL Fork LL Mosntain Handle

~

p |

Today’s Deals Components

roducts 96 Products 130 Products

Accessories Clothing

To provide this zooming functionality, the SemanticZoom control usestwo other controls—oneto
provide the zoomed-in view and one to provide the zoomed-out view. These controls can be any two
controls that implement the ISemanticZoomlInformationinterface. XAML provides the ListView and

GridView controls that meet this criteria.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.isemanticzoominformation.aspx

85

Tip Whenyou use a GridView in a SemanticZoom control, always set the

ScrollViewer.lsHorizontalScrollChainingEnabled attached property to false on the ScrollViewer
that's inthe GridView’s control template.

For the zoomed-in view, we display a GridView that binds to products that are grouped by sub-
category. The GridView also shows a title (the category) foreach group.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<SemanticZoom.ZoomedInView>
<!-- Horizontal scrolling grid used in most view states -->
<controls:MultipleSizedGridView x:Name="itemsGridView"
AutomationProperties.AutomationId="HubPageItemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0,-3,0,0"
Padding="116,0,40,46"
ItemsSource="{Binding Source={StaticResource groupedItemsViewSource}}"
ItemTemplate="{StaticResource AWShopperItemTemplate}"
SelectionMode="None"
ScrollViewer.IsHorizontalScrollChainingEnabled="False"
IsItemClickEnabled="True"
behaviors:ListViewItemClickedToAction.Action=
"{Binding ProductNavigationAction}">

The ItemsSource property specifiesthe itemsto be displayed by the GridView. The
groupedIltemsViewSource staticresource is a CollectionViewSource that provides the source data
for the control.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<CollectionViewSource x:Name="groupedItemsViewSource"

Source="{Binding Path=RootCategories}"

d:DesignSource="{Binding RootCategories,
Source={d:DesignInstance
designViewModels:HubPageDesignViewModel,
IsDesignTimeCreatable=True}}"

IsSourceGrouped="true"

ItemsPath="Products" />

The RootCategories property on the HubPageViewModel specifies the datathatis boundto the
GridView for the zoomed-in view. RootCategories is a collection of CategoryViewModel objects.
The ItemsPath property refers to the Products property of the CategoryViewModel class. Therefore,
the GridView will show each product grouped by the category it belongs to.

For the zoomed-out view, we display a GridView that binds to filled rectangles for each category.
Within each category the category title and number of productsis displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.ishorizontalscrollchainingenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.itemspath.aspx

86

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<SemanticZoom.ZoomedOutView>
<GridView Padding="120,0,0,0"
Foreground="White"
AutomationProperties.AutomationId="HubPageGridView"
ScrollViewer.IsHorizontalScrollChainingEnabled="False"
ItemTemplate="{StaticResource AWShopperItemTemplateSemanticZoom}">

For more info about SemanticZoom, see Adding SemanticZoom controls, and Guidelines for
SemanticZoom.

Swipe from edge for app commands

When there are relevant commandsto display, the Adventure Works Shopper reference
implementation displays the app bar when the userswipes fromthe bottom ortop edge of the
screen. Every page can define atop app bar, a bottom app bar, or both. For instance,
AdventureWorks Shopper displays both when you activate the app bars on the ShoppingCartPage.
The following diagram shows an example of the swipe from edge forapp commands gesture in
AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh780622.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx

87

®© Shopping Cart

Maentam 400 W fec. 42

The tike delver gh-levd of
performance on 2 budget. It 5.

Qry

55?7 12 e

The AppBar control is a toolbar for displaying app-specificcommands. AdventureWorks Shopper
displays app barson each page. The Page.TopAppBar property can be used to define the top app
bar, with the Page.BottomAppBar property being used to define the bottom app bar. Each of these
properties will contain an AppBar control that holdsthe app bar's Ul components. Ingeneral, you
should use the bottom app bar for contextual commands that act on the currently selected itemon
the page. Use the top app bar for navigational elements that move the userto a different page.

AdventureWorks Shopperimplements the top app bar for each page as a user control named
TopAppBarUserControl. This user control simply defines the Button controls that will appearinthe
top app bar. Each Button bindsto a command in the TopAppBarUserControlViewModel class.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.topappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.bottomappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

88

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Height="125"
Margin="0,15,0,0">
<Button x:Name="HomeAppBarButton" x:Uid="HomeAppBarButton"
AutomationProperties.AutomationId="HomeAppBarButton"
Command="{Binding HomeNavigationCommand}"
Margin="5,0"
Style="{StaticResource HouseStyle}"
Content="Home"
Height="125"/>
<Button x:Uid="ShoppingCartAppBarButton” x:Name="ShoppingCartAppBarButton"
AutomationProperties.AutomationId="ShoppingCartAppBarButton"
Command="{Binding ShoppingCartNavigationCommand}"
Margin="0,0,5,0"
Height="125"
Style="{StaticResource CartStyle}"
Content="Shopping Cart" />
</StackPanel>

The Page.TopAppBar property on each page then uses the TopAppBarUserControl to define the top
app bar.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<Page.TopAppBar>
<AppBar Style="{StaticResource AppBarStyle}"
x :Uid="TopAppBar">
<views:TopAppBarUserControl />
</AppBar>
</Page. TopAppBar>

The following diagram shows the top app bar buttons foreach page.

A

Home Shopping Cart

Whenan itemon a page is selected, the app bar isshownin orderto display contextual commands,
by settingthe IsOpen property on the AppBar control. If you have contextual commands onanapp
bar, the mode should be set to sticky while the context exists so thatthe bar doesn'tautomatically
hide when the userinteracts with the app. When the contextis nolonger present, sticky mode can
be turned off. This can be achieved by setting the IsSticky property on the AppBar control.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.isopen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.issticky.aspx

89

Per Ul guidelines for app bars, we display labels onthe app bar buttonsinlandscape mode and hide
the labelsinsnapand portrait mode.

For more information see Adding app bars, How to use an app barin different views, and Guidelines
and checklistforapp bars.

Swipe from edge for system commands

Users can swipe from the edge of the screento reveal app bars and charms, or to display previously
used apps. Therefore, itisimportant to maintain a sufficient distance between app controls and the
screen edges. The following diagram shows an example of the swipefrom edge for system
commands gesture in AdventureWorks Shopper.

© Shopping Cart

$577.12 swaee

® Shopping Cart

$577.12 —gonas

For more infosee Layingoutan app page.

http://msdn.microsoft.com/en-us/library/windows/apps/hh781230.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj662742.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781231.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781231.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

90

Validating user input in AdventureWorks Shopper (Windows Store
business apps using C#,XAML, and Prism)

Summary

e Derive model classes from the ValidatableBindableBase class, provided by the
Microsoft.Practices.Prism.StoreApps library, in orderto participate in client-side validation.

e Specifyvalidationrulesfor model properties by adding data annotation attributes to the
properties.

e Callthe ValidatableBindableBase.ValidateProperties method to validateall the properties
ina model objectthat possess an attribute that derives from the ValidationAttribute
attribute.

Business apps such as shopping cart apps require users to enter datathat must be validated for
correctness. This article demonstrates how to validate form-based inputin a Windows Store app by
using Prism forthe Windows Runtime.

You will learn

e How to validate datastoredin a bound model object.

e How to specify validation rules for model properties by using dataannotations.

e How to triggervalidation when property values change.

e How to highlight validation errors with attached behaviors.

e How to save validation errors whenthe app suspends, and restore them whenthe appis
reactivated after termination.

Applies to

e Windows Runtime for Windows 8
o« CH#
¢ Extensible Application Markup Language (XAML)

Making key decisions

Any app that acceptsinputfrom users should ensure that the data isvalid. Anapp could, for
example, check thatthe input contains only charactersin a particularrange, is of a certainlength, or
matches a particularformat. Without validation, auser can supply data that causes the app to fail.
Validation forces business rules, and prevents an attacker frominjecting malicious data. The
following list summarizes the decisions to make when implementing validationin yourapp:

e Shouldlvalidate userinputonthe client, onthe server, oron both?

e Shouldlvalidate userinputsynchronously orasynchronously?

e Shouldlvalidate userinputinview model objects orin model objects?

e How should|specifyvalidation rules?

¢ How shouldInotify the useraboutvalidation errors?

e What approach should | use for saving validation errors when the app suspends?

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

91

Validation can be performed client-side, server-side, or both. Validation on the client provides a
convenient way forthe userto correct input mistakes without round trips tothe server. Validation
on the servershould be used when server-side resources are required, such as a list of valid values
storedina database, against which the input can be compared. Although client-side validationis
necessary, you should notrely solely onitbecause itcan easily be bypassed. Therefore, you should
provide client-side and server-side validation. This approach provides a security barrierthat stops
malicious users who bypass the client-side validation.

Synchronous validation can check the range, length, or structure of userinput. Userinput should be
validated synchronously whenitis captured.

User input could be validated in view model objects orin model objects. However, validating datain
view models often means duplicating model properties. Instead, view models can delegate
validationtothe model objects they contain, with validation then being performed on the model
objects. Validation rules can be specified onthe model properties by using dataannotations that
derive fromthe ValidationAttribute class.

Users should be notified about validation errors by highlighting the control that contains the invalid
data, and by displayingan error message thatinforms the user why the data isinvalid. There are
guidelines and requirements for the placement of error messagesin Windows Store apps. For more
infosee Guidelines and checklist fortextinput.

When a suspended appisterminated and later reactivated by the operating system, the app should
returnto its previous operationaland visual state. If yourappis on a data entry page whenit
suspends, userinputand any validation error messages should be saved to disk, and restored if the
app isterminated and subsequently reactivated. For more info see Guidelinesforapp suspend and

resume.

Validation in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation uses the
Microsoft.Practices.Prism.Store Apps library to perform client-side and server-side validation.
Synchronous validation of data stored in model objectsis performed client-sidein orderto check the

range, length, and structure of userinput. Validation thatinvolves server-side business rules, such as
ensuring that entered zip codes are valid for the entered state, and checkingif acredit card has
sufficientfunds to allow the purchase, occurs onthe server. Inaddition, AdventureWorks Shopper
shows how the results of server-side validation can be returned to the client.

Model classes must derive from the ValidatableBindableBase class, provided by the
Microsoft.Practices.Prism.StoreApps library, in order to participate in validation. This class provides

an error container(aninstance of the BindableValidator class thatis the type of the Errors property)
whose contents are updated whenever amodel class property value changes. The BindableValidator
class and ValidatableBindableBase class derive from the BindableBase class, which raises property
change notification events. Formore info see Triggering validation when properties change.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh738358.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx

92

The SetProperty methodinthe ValidatableBindableBase class performs validation when amodel
propertyissetto a newvalue. The validation rules come from data annotation attributes that derive
from the ValidationAttribute class. The attributes are taken from the declaration of the model

property beingvalidated. For more info see Specifying validation rules and Triggering validation
when properties change.

In the AdventureWorks Shopperreference implementation, users are notified about validation
errors by highlighting the controls that contain the invalid datawith red borders, and by displaying
error messages thatinformthe user why the data isinvalid below the controls containinginvalid
data.

If the app suspends while adataentry pageis active, userinputand any validation error messages
are saved todisk, and restored when the app resumes following reactivation. Therefore, when the
app suspendsitwill laterresumeas the userleftit. Formore infosee Highlighting validation errors
with attached behaviors and Persisting userinput and validation errors when the app suspends and

resumes.

The following diagram shows the classesinvolved in performing validationin AdventureWorks
Shopper.

T IMotifyPropertyChanged

BindahleBase

derives from . .
T |
IValidatableBindableBase IN‘Dt|F'S" F'TIJDE'rt's-'EhElI'IgEd

ValidatableBinda ble\l =(BindableValidatar
Base) creates and uses k

get errors to

derives from
display

[Walidation rules] (
Model class 4

/]q set properties k

Specifying validation rules

TextBox

Validation rules are specified by adding data annotation attributes to propertiesin model classes
that will require validation. To participate in validation amodel class must derive from the
ValidatableBindableBase class.

The data annotation attributes added toa model property whose datarequires validation derive
fromthe ValidationAttribute class. The following code example shows the FirstName property from
the Address class.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

93

C#: AdventureWorks.UlLogic\Models\Address.cs

[Required(ErrorMessageResourceType = typeof(ErrorMessagesHelper),

ErrorMessageResourceName = "RequiredErrorMessage")]
[RegularExpression(NAMES_REGEX_PATTERN, ErrorMessageResourceType =

typeof (ErrorMessagesHelper), ErrorMessageResourceName = "RegexErrorMessage")]
public string FirstName
{

get { return _firstName; }

set { SetProperty(ref _firstName, value); }
}

The Required attribute of the FirstName property specifies that a validation failure occurs if the field
isnull, contains an empty string, or contains only white-space characters. The RegularExpression
attribute specifies that the FirstName property must match the regularexpression given by the
NAMES_REGEX_PATTERN constant. This regularexpression allows userinputto consist of all

unicode name characters as well as spaces and hyphens, as long as the spaces and hyphensdon't
occur in sequences and are not leading or trailing characters.

The static ErrorMessagesHelperclassis usedto retrieve validation error messages from the resource
dictionary forthe currentlocale, andis used by the Required and RegularExpression validation
attributes. Forexample, the Required attribute on the FirstName property specifies thatif the
property doesn't contain a value, the validation error message will be that returned by the

RequiredErrorMessage property of the ErrorMessagesHelper class.

In the AdventureWorks Shopper reference implementation, all of the validation rules thatare
specified onthe clientalso appearonthe server. Performing validation on the client helps users
correct input mistakes without round trips to the server. Performing validation on the server
prevents attackers from bypassing validation code in the client. Client validation occurs when each
property changes. Servervalidation happens less frequently, usually when the user has finished
enteringall of the data on a page.

In AdventureWorks Shopper, additional validation rules exist on the serverside, forexample to
validate zip codes and authorize credit card purchases. The following example shows how the
AdventureWorks Shopperweb service performs server-side validation of the zip code dataentered
by the user.

Ci#: AdventureWorks.WebServices\Models\Address.cs

[Required(ErrorMessageResourceType = typeof(Resources),

ErrorMessageResourceName = "ErrorRequired")]
[RegularExpression(NUMBERS_REGEX_PATTERN, ErrorMessageResourceType =
typeof (Resources), ErrorMessageResourceName = "ErrorRegex")]

[CustomValidation(typeof(Address), "ValidatezipCodeState")]
public string ZipCode { get; set; }

The CustomValidation attribute specifies an application-provided method that will be invoked to
validate the property wheneveravalue isassigned toit. The validation method must be publicand

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.aspx

94

static, and itsfirst parameter must be the objectto validate. The following code example shows the
ValidateZipCodeState method thatis used to validate the value of the ZipCode property onthe
server.

C#: AdventureWorks.WebServices\Models\Address.cs

public static ValidationResult ValidateZipCodeState(object value,
ValidationContext validationContext)

{
bool isValid = false;
try
{
if (value == null)
{
throw new ArgumentNullException("value");
}
if (validationContext == null)
{
throw new ArgumentNullException("validationContext");
}

var address = (Address)validationContext.ObjectInstance;

if (address.zZipCode.Length < 3)
{

return new ValidationResult(Resources.ErrorZipCodeInvalidLength);

}

string stateName = address.State;

State state = new StateRepository().GetAll().FirstOrDefault(
¢ => c.Name == stateName);

int zipCode = Convert.ToInt32(address.ZipCode.Substring(o, 3),
CultureInfo.InvariantCulture);

foreach (var range in state.ValidZipCodeRanges)

{
// If the first 3 digits of the Zip Code falls within the given range,
// it is valid.
int minValue = Convert.ToInt32(range.Split('-')[0],
CulturelInfo.InvariantCulture);
int maxValue = Convert.ToInt32(range.Split('-')[1],
CultureInfo.InvariantCulture);

isValid = zipCode >= minValue && zipCode <= maxValue;
if (isvalid) break;

}
catch (ArgumentNullException)

{

isValid = false;

95

if (isvalid)

! return ValidationResult.Success;
}
else
{
return new ValidationResult(Resources.ErrorInvalidZipCodeInState);
}

The method checks that the zip code value is withinthe allowable range fora given state. The
ValidationContext method parameter provides additional contextualinformation thatis used to

determine the contextin which the validationis performed. This parameter enables access to the
Address objectinstance, from which the value of the State and ZipCode properties can be retrieved.
The server's StateRepository class returns the zip code ranges for each state, and the value of the
ZipCode propertyisthen checked againstthe zip code range for the state. Finally, the validation
resultisreturnedasa ValidationResult object, in orderto enable the method toreturnanerror

message if required. For more info about custom validation methods, see
CustomValidationAttribute.Method property.

Note

Althoughitdoes notoccurin the AdventureWorks Shopper reference implementation, property
validation can sometimesinvolve dependent properties. An example of dependent properties occurs
when the set of valid values for property A depends on the particularvalue thathasbeensetin
property B. If you want to check that the value of property A is one of the allowed values, you would
first need toretrieve the value of property B. In addition, when the value of property Bchanges you
would needtorevalidate property A.

Validating dependent properties can be achieved by specifying a CustomValidation attribute and

passing the value of property B in the ValidationContext method parameter. Custom validation logic
inthe model class could then validate the value of property A while taking the current valu e of

property B into consideration.

Triggering validation when properties change

Validationis automatically triggered on the client whenever abound property changes. Forexample,
when atwoway bindinginaview setsa bound propertyina model class, that class shouldinvoke
the SetProperty method. This method, provided by the BindableBase class, sets the property value
and raisesthe PropertyChanged event. However, the SetProperty methodis also overridden by the
ValidatableBindableBase class. The ValidatableBindableBase.SetProperty method calls the
BindableBase.SetProperty method, and performs validation if the property has changed. The
following code example shows how validation happens aftera property change.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationcontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationresult.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.method.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationcontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

96

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperty(string propertyName)

{
if (string.IsNullOrEmpty (propertyName))
{
throw new ArgumentNullException("propertyName");
}
var propertyInfo = _entityToValidate.GetType()
.GetRuntimeProperty(propertyName);
if (propertyInfo == null)
{
var resourcelLoader =
new ResourcelLoader(Constants.StoreAppsInfrastructureResourceMapld);
var errorString =
resourceLoader.GetString("InvalidPropertyNameException");
throw new ArgumentException(errorString, propertyName);
}
var propertyErrors = new List<string>();
bool isValid = TryValidateProperty(propertyInfo, propertyErrors);
bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);
if (errorsChanged)
{
OnErrorsChanged(propertyName) ;
OnPropertyChanged (string.Format(CultureInfo.CurrentCulture,
"Item[{0}]", propertyName));
}
return isValid;
}

This methodretrievesthe property thatisto be validated, and attempts to validate it by calling the
TryValidateProperty method. If the validation results change, for example, when new validation
errors are found or when previous errors have been corrected, then the ErrorsChanged and
PropertyChanged events are raised for the property. The following code exampleshows the
TryValidateProperty method.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

private bool TryValidateProperty(PropertyInfo propertyInfo,
List<string> propertyErrors)
{
var results = new List<ValidationResult>();
var context = new ValidationContext(_entityToValidate)
{ MemberName = propertyInfo.Name };
var propertyValue = propertyInfo.GetValue(_entityToValidate);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

97

// Validate the property
bool isValid = Validator.TryValidateProperty(propertyValue, context, results);

if (results.Any())
{

propertyErrors.AddRange (results.Select(c => c.ErrorMessage));

return isValid;

This method calls the TryValidateProperty method from the Validator class to validate the property
value againstthe validationrules forthe property. Any validation errors are added to a new list.

Triggering validation of all properties

Validation can also be triggered manually forall properties of amodel object. Forexample, this
occurs in AdventureWorks Shopper when the userselects the Submit button on the
CheckoutHubPage. The button's command delegate calls the ValidateForm methods on the
ShippingAddressUserControlViewModel, BillingAddressUserControlViewModel, and
PaymentMethodUserControlViewModel classes. These methods call the ValidateProperties
method of the BindableValidator class. The following code example shows the implementation of
the BindableValidator class's ValidateProperties method.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperties()
{

var propertiesWithChangedErrors = new List<string>();

// Get all the properties decorated with the ValidationAttribute attribute.
var propertiesToValidate = _entityToValidate.GetType().GetRuntimeProperties()
.Where(c => c.GetCustomAttributes (typeof(ValidationAttribute)).Any());

foreach (PropertyInfo propertyInfo in propertiesToValidate)
{
var propertyErrors = new List<string>();
TryValidateProperty(propertyInfo, propertyErrors);

// If the errors have changed, save the property name to notify the update
// at the end of this method.
bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);
if (errorsChanged &&

I propertiesWithChangedErrors.Contains (propertyInfo.Name))
{

propertiesWithChangedErrors.Add (propertyInfo.Name);

// Notify each property whose set of errors has changed since the last

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validator.aspx

98

// validation.
foreach (string propertyName in propertiesWithChangedErrors)

{
OnErrorsChanged(propertyName) ;

OnPropertyChanged (string.Format(CultureInfo.CurrentCulture,
"Item[{0}]", propertyName));

return _errors.Values.Count == 9;

This method retrieves any properties that have attributes that derive from the ValidationAttribute
attribute, and attempts tovalidate them by calling the TryValidateProperty method for each
property. If the validation state changes, the ErrorsChanged and PropertyChanged events are raised
for each property whose errors have changed. Changes occur when new errors are seenorwhen

previously detected errors are nolonger present.

Triggering server-side validation

Server-sidevalidation uses web service calls. Forexample, when the userselects the Submitbutton
on the CheckoutHubPage, server-side validation is triggered by the GoNext method calling the
ProcessFormAsync method, once client-side validation has succeeded. The following code example
shows part of the ProcessFormAsync method.

C#: AdventureWorks.UILogic\ViewModels\CheckoutHubPageViewModel.cs

try
{
// Create an order with the values entered in the form
await _orderRepository.CreateBasicOrderAsync(user.UserName, shoppingCart,
ShippingAddressViewModel.Address, BillingAddressViewModel.Address,
PaymentMethodViewModel.PaymentMethod);
_navigationService.Navigate ("CheckoutSummary", null);
}
catch (ModelvalidationException mvex)
{
DisplayOrderErrorMessages(mvex.ValidationResult);
if (_shippingAddressViewModel.Address.Errors.Errors.Count > 0)
IsShippingAddressInvalid = true;
if (_billingAddressViewModel.Address.Errors.Errors.Count > 0 &&
lUseSameAddressAsShipping) IsBillingAddressInvalid = true;
if (_paymentMethodViewModel.PaymentMethod.Errors.Errors.Count > 0)
IsPaymentMethodInvalid = true;
}

This method calls the CreateBasicOrderAsync method on the OrderRepository instance to submit
the created orderto the web service. If the CreateBasicOrderAsync method successfully completes,
thenthe data has beenvalidated onthe server.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

99

The CreateBasicOrderAsync method uses the HttpClientHandler and HttpClient classes to send the
orderto the webservice, and then calls the EnsureSuccessWithValidationSupport extension
method to process the response from the web service. The following code example shows the
EnsureSuccessWithValidationSupport method.

C#: AdventureWorks.UILogic\Services\HttpResponseMessageExtensions.cs

public static async Task EnsureSuccessWithValidationSupportAsync(this
HttpResponseMessage response)

{
// If BadRequest, see if it contains a validation payload
if (response.StatusCode == System.Net.HttpStatusCode.BadRequest)
{
ModelValidationResult result = null;
try
{
result = await response.Content
.ReadAsAsync<Models.ModelValidationResult>();
}
catch { } // Fall through logic will take care of it
if (result != null) throw new ModelValidationException(result);
}
if (response.StatusCode == System.Net.HttpStatusCode.Unauthorized)
throw new SecurityException();
// Will throw for any other service call errors
response. EnsureSuccessStatusCode();
}

If the response contains a BadRequest status code the ModelValidationResultis read from the
response, andif the response isn't null a ModelValidationException is thrown, which indicates that
server-sidevalidation failed. This exception is caught by the ProcessFormAsync method, which will
then call the DisplayOrderErrorMessages method to highlight the controls containinginvalid data
and display the validation error messages.

Highlighting validation errors with attached behaviors
In the AdventureWorks Shopper reference implementation, client-side validation errors are shown

to the userby highlighting the control that containsinvalid data, and by displayingan error message
beneath the control, as shown in the following diagram.

First Name*

The HighlightFormFieldOnErrors and HighlightFormComboOnErrors attached behaviors are used to
highlight FormFieldTextBox and ComboBox controls when validation errors occur. The following

http://msdn.microsoft.com/en-us/library/windows/apps/system.net.http.httpclienthandler.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.net.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.net.httpstatuscode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.combobox.aspx

100

code example shows how the HighlightFormFieldOnErrors behaviorisattachedtoa
FormFieldTextBox control.

XAML: AdventureWorks.Shopper\Views\ShippingAddressUserControl.xaml

<controls:FormFieldTextBox x:Name="FirstName"
x:Uid="FirstNameTextBox"
AutomationProperties.AutomationId="FirstNameTextBox"
AutomationProperties.LabeledBy=
"{Binding ElementName=TitleFirstName}"
Style="{StaticResource FormFieldStyle}"
Grid.Row="1"
Grid.Column="0"
AutomationProperties.IsRequiredForForm="True"
Text="{Binding Address.FirstName, Mode=TwoWay}"
behaviors:HighlightFormFieldOnErrors.PropertyErrors=
"{Binding Address.Errors[FirstName]}" />

The attached behaviorgets and sets the PropertyErrors dependency property. The following code
example shows how the PropertyErrors dependency propertyisdefinedinthe
HighlightFormFieldOnErrors class.

C#: AdventureWorks.Shopper\Behaviors\HighlightFormFieldOnErrors.cs

public static DependencyProperty PropertyErrorsProperty =
DependencyProperty .RegisterAttached("PropertyErrors",
typeof (ReadOnlyCollection<string>), typeof(HighlightFormFieldOnErrors),
new PropertyMetadata(BindableValidator.EmptyErrorsCollection,
OnPropertyErrorsChanged));

The PropertyErrors dependency property is registered as a ReadOnlyCollection of strings, by the
RegisterAttached method. When the value of the PropertyErrors dependency property changes, the
OnPropertyErrorsChanged method isinvoked to change the highlighting style of the input control.
The following code example shows the OnPropertyErrorsChanged method.

C#: AdventureWorks.Shopper\Behaviors\HighlightFormFieldOnErrors.cs

private static void OnPropertyErrorsChanged(DependencyObject d,
DependencyPropertyChangedEventArgs args)

{
if (args == null || args.NewValue == null)
{
return;
}

var control = (FrameworkElement)d;
var propertyErrors = (ReadOnlyCollection<string>)args.NewValue;

Style style = (propertyErrors.Any()) ? (Style)Application.Current
.Resources["HighlightFormFieldStyle"] : (Style)Application.Current
.Resources["FormFieldStyle"];

control.Style = style;

http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701833.aspx

101

The OnPropertyErrorsChanged method's parameters give the instance of the FormFieldTextBox
that the PropertyErrors dependency property is attached to, and any validation errors forthe
FormFieldTextBox. Then, if validation errors are present the HighlightFormFieldStyle is applied to
the FormFieldTextBox, sothatit is highlighted with ared BorderBrush.

The Ul also displays validation error messages in TextBlocks below each control whose datafailed
validation. The following code example shows the TextBlock that displays a validation error message
ifthe user has entered aninvalid first name fortheirshipping details.

XAML: AdventureWorks.Shopper\Views\ShippingAddressUserControl.xaml

<TextBlock x:Name="ErrorsFirstName"
Style="{StaticResource ErrorMessageStyle}"
Grid.Row="2"
Grid.Column="0"
Text="{Binding Address.Errors[FirstName],
Converter={StaticResource FirstErrorConverter}}"
TextWrapping="Wrap" />

Each TextBlock binds to the Errors property of the model object whose properties are being
validated. The Errors property is provided by the ValidateableBindableBase class, andis an instance
of the BindableValidator class. The indexer of the BindableValidator class returns a
ReadOnlyCollection of error strings, with the FirstErrorConverter retrieving the firsterror from the
collection, fordisplay.

Persisting user input and validation errors when the app suspends and
resumes

Windows Store apps should be designed to suspend when the user switches away from them and
resume whenthe userswitches back tothem. Suspended apps thatare terminated by the operating
system and subsequently reactivated should resumein the state that the user left themratherthan
starting afresh. This has an impact on validationinthatif an app suspends on a data entry page, any
userinputand validation errormessages should be saved. Then, onreactivation the userinputand
validation error messages should be restored to the page. Formore info see Guidelines forapp

suspend andresume.

AdventureWorks Shopperaccomplishes this task by using overridden OnNavigatedFrom and
OnNavigatedTo methodsinthe view model class forthe page. The OnNavigatedFrom method
allows the view model to save any state before itis disposed of priorto suspension. The
OnNavigatedTo method allows anewly displayed page toinitialize itself by loading any view model
state when the app resumes.

All of the view model classes derive from the ViewModel base class, which implements
OnNavigatedFrom and OnNavigatedTo methods that save and restore view model state,
respectively. This avoids each view model class having to implement this functionality to support the
suspend and resume process. However, the OnNavigatedFrom and OnNavigatedTo methods can be

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.border.borderbrush.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx

102

overriddeninthe view model class for the page if any additional navigation logicis required, such as
addingthe validation errors collection to the view state dictionary. The following code e xample
shows how the OnNavigatedFrom method in the BillingAddressUserControlViewModel class adds
any billing address validation errors to the session state dictionary that will be serialized to disk by
the SessionStateService class when the app suspends.

C#: AdventureWorks.UILogic\ViewModels\BillingAddressUserControlViewModel.cs

public override void OnNavigatedFrom(Dictionary<string, object> viewState,
bool suspending)

{
base.OnNavigatedFrom(viewState, suspending);
// Store the errors collection manually
if (viewState != null)
{
AddEntityStateValue("errorsCollection", _address.GetAllErrors(),
viewState);
}
}

This method ensures that when the app suspends, the BillingAddressUserControlViewModel state
and any billing address validation error messages will be serialized to disk. View model properties
that have the RestorableState attribute will be added to the session state dictionary by the
ViewModel.OnNavigatedFrom method beforethe ViewModel.AddEntityStateValue method adds
the validation error message collection to the session state dictionary. The GetAllErrors method is
implemented by the ValidatableBindableBase class, whichin turn calls the GetAllErrors method of
the BindableValidatorclass to returnthe validation error messages for the Address model instance.

Whenthe app is reactivated after termination and page navigation is complete, the OnNavigatedTo
method inthe active view model class will be called. The following code example shows how the
OnNavigatedTo method in the BillingAddressUserControlViewModel restores any billing address
validation errors from the session state dictionary.

C#: AdventureWorks.UILogic\ViewModels\BillingAddressUserControlViewModel.cs

public override async void OnNavigatedTo(object navigationParameter,
NavigationMode navigationMode, Dictionary<string, object> viewState)

// The States collection needs to be populated before setting the State
// property
await PopulateStatesAsync();

if (viewState != null)

{
base.OnNavigatedTo(navigationParameter, navigationMode, viewState);
if (navigationMode == NavigationMode.Refresh)
{

// Restore the errors collection manually

var errorsCollection = RetrieveEntityStateValue<IDictionary<string,
ReadOnlyCollection<string>>>("errorsCollection"”, viewState);

103

if (errorsCollection != null)
{
_address.SetAllErrors(errorsCollection);
}
}
}
if (navigationMode == NavigationMode.New)
{
var addressId = navigationParameter as string;
if (addressId != null)
{
Address =
await _checkoutDataRepository.GetBillingAddressAsync(addressId);
return;
}
if (_loadDefault)
{
var defaultAddress =
await _checkoutDataRepository.GetDefaultBillingAddressAsync();
if (defaultAddress != null)
{
// Update the information and validate the values
Address.FirstName = defaultAddress.FirstName;
Address.MiddleInitial = defaultAddress.MiddleInitial;
Address.LastName = defaultAddress.LastName;
Address.StreetAddress = defaultAddress.StreetAddress;
Address.OptionalAddress = defaultAddress.OptionalAddress;
Address.City = defaultAddress.City;
Address.State = defaultAddress.State;
Address.ZipCode = defaultAddress.ZipCode;
Address.Phone = defaultAddress.Phone;
}
}
}

This method ensuresthat when the app is reactivated following termination, the

BillingAddressUserControlViewModel state and any billing address validation error messages will be
restored from disk. View model properties that have the RestorableState attribute will be restored

from the session state dictionary by the ViewModel.OnNavigatedTo method, before the

ViewModel.RetrieveEntityStateValue method retrieves any validation error messages. The
SetAllErrors method isimplemented by the ValidatableBindableBase class, which inturn calls the
SetAllErrors method of the BindableValidator class to set the validation error messagesforthe
Address model instance. Then, provided that the navigationisto anew instance of a page, the

billingaddressisretrieved.

For more info see Creating and navigating between pages and Handling suspend, resume, and

activation.

104

Managing application data in AdventureWorks Shopper (Windows
Store business apps using C#, XAML, and Prism)

Summary

e Use the application data APls to work with application data, makingthe system responsible
for managing the physical storage of data.

e Onlystore passwordsinthe credential lockerif the user has successfully signedintothe app
and has optedto save passwords.

e Use ASP.NETWeb APl to create a resource-oriented web service that can pass different
contenttypes.

Application datais datathat is specifictoa Windows Store app andincludes runtime state, user
preferences, and othersettings. Application datais created, read, updated, deleted, and cached
whenthe app isrunning. This article examines how the AdventureWorks Shopperreference
implementation manages its application dataincluding storing passwords in the credentiallocker,
authenticating users, and retrieving datafrom a web service while minimizing the network traffic
and battery life of the device. AdventureWorks Shopper uses Prism for the Windows Runtime to
customize the default Settings pane shown in the Settings charm.

You will learn

e How to store data inthe app data stores.

e How to store passwordsinthe credential locker.

e How to use the Settings charmto allow usersto change app settings.

e How to use model objects as datatransferobjects.

e How to perform credentials-based authentication between a Windows Store appanda web
service.

e How toreliablyretrievedatafroma web service.

e How to cache data from a web service on disk.

Applies to

e Windows Runtime for Windows 8
e CH
e Extensible Application Markup Language (XAML)

Making key decisions

Application datais datathat the app itself creates and manages. Itis specificto the internal
functions orconfiguration of an app, and includes runtime state, user preferences, reference
content, and othersettings. App datais tied to the existence of the app andis only meaningful to
that app. The following list summarizes the decisions to make when managing application datain

your app:

e Where and how should I store application data?

105

e What type of data should | store as application data?

e Dol needtoprovide a privacy policy formy app, and if so, where should it be displayed to
users?

e How manyentriesshouldlinclude inthe Settings charm?

e What data should be allowed to roam?

e How shouldlimplementaweb service thata Windows Store app will connectto?

e How shouldlauthenticate users withaweb service ina Windows Store app?

e ShouldIcache data fromthe webservice locally?

Windows Store apps should use app data stores forsettings and files that are specificto each app
and user. The system manages the data stores foran app, ensuringthatthey are keptisolated from
otherapps and users. In addition, the system preserves the contents of these datastores whenthe
userinstallsan update to your app and removes the contents of these datastores completely and
cleanlywhenyourappis uninstalled.

Application datashould not be used to store userdata or anything that users might perceive as
valuable andirreplaceable. The user's libraries and Microsoft SkyDrive should be used to store this
sort of information. Application dataisideal forstoring app-specificuser preferences, settings,
reference data, and favorites. Formore info see App data.

If your app usesor enables access toany Internet-based services, or collects or transmits any user's
personal information, you must maintain a privacy policy. You are responsible forinforming users of
your privacy policy. The policy must comply with applicable laws and regulations, inform users of the
information collected by yourapp and how thatinformationis used, stored, secured, and disclosed,
describe the controls that users have overthe use and sharing of theirinformation, and how they
may access theirinformation. You must provide access to your privacy policy inthe app's settings as
displayedinthe Settings charm. If you submityourapp to the Windows Store you must also provide
access to your privacy policy in the Description page of yourapp on the Windows Store. For more
infosee Windows 8app certification requirements.

The top part of the Settings pane lists entry points for yourapp settings, with each entry point
performingan action such as openingaFlyout, oropeningan external link. Similar orrelated options
should be grouped togetherunderone entry pointin orderto avoid adding more than fourentry
points. Formore info see Guidelines for app settings.

Utilizingroaming application datainappis easy and does not require significant code changes. Itis
bestto utilize roamingapplication dataforall size-bound dataand settings thatare used to preserve
a user's settings preferences. Formore info see Guidelines for roaming application data.

There are a number of approaches forimplementingaweb service thata Windows Store app can
connectto:

e Windows Azure Mobile Services allow youtoadd a cloud-based service to your Windows
Store app. For more info see Windows Azure Mobile Services Dev Center.

http://msdn.microsoft.com/en-us/library/windows/apps/jj553522.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://go.microsoft.com/fwlink/?LinkID=298977

106

e Windows Communication Foundation (WCF) enables you to develop web services based on
SOAP. These services focus on separating the service fromthe transport protocol. Therefore,
you can expose the same service using different endpoints and different protocols such as
TCP, User Datagram Protocol (UDP), HTTP, Secure Hypertext Transfer Protocol (HTTPS), and
Message Queuing. However, this flexibility comes at the expense of the extensive use of
configuration and attributes, and the resulting infrastructure is not always easily testable. In
addition, new client proxies need to be generated whenever the input or output model for
the service changes.

e The ASP.NETWeb API allowsyouto develop web servicesthat are exposed directly over
HTTP, thus enablingyoutofully harness HTTP as an application layer protocol. Web services
can then communicate with a broad set of clients whether they are apps, browsers, or back-
endservices. The ASP.NET Web APl is designed to supportapps built with REST, but it does
not force apps to use a RESTful architecture. Therefore, if the input or output model forthe
service changes, the client simply has to change the query string that is sent to the web
service, or parse the data received from the web service differently.

The primary difference between WCF and the ASP.NET Web APl is that while WCFis based on SOAP,
the ASP.NETWeb APlis based on HTTP. HTTP offers the following advantages:

e Itsupportsverbsthatdefine actions. Forexample, you query information using GET, and
create information using POST.

e It contains message headersthatare meaningfuland descriptive. Forexample, the headers
suggest the content type of the message's body.

e It containsa bodythat can be usedforany type of content, notjust XML content as SOAP
enforces. The body of HTTP messages can be anything you want including HTML, XML,
JavaScript Object Notation (JSON), and binary files.

e ltusesUniform Resource Identifiers (URIs) to identify both resources and actions.

The decision of whetherto use WCF or the ASP.NET Web APl inyour app can be made by answering
the following the following questions:

e Do youwant to create a service that supports special scenarios such as one-way messaging,
message queues, and duplex communication? If so you should use WCF.

e Do youwant to acreate service that usesfast transport channels when available, such as
TCP, named pipes, or UDP? If so you should use WCF.

e Do youwantto create a service that usesfast transport channels when available, but uses
HTTP when all othertransport channels are unavailable? If so you should use WCF.

e Do youwant to simplyserialize objects and deserialize them as the same strongly -typed
objects at the otherside of the transmission? If so you should use WCF.

e Do youneedto use a protocol otherthan HTTP? If so you should use WCF.

e Do youwantto create a resource-oriented service thatis activated through simple action-
oriented verbs such as GET, and that responds by sending contentas HTML, XML, a JSON
string, or binary data? If so you should use the ASP.NET Web API.

e Do you have bandwidth constraints? If so you should use the ASP.NET Web APl with JSON, as
it sendsasmaller payload than SOAP.

107

e Do youneedto supportclientsthatdon'thave a SOAP stack? If soyou should use the
ASP.NETWeb API.

There are a number of approaches that could be taken to authenticate users of a Windows Store app
with a web service. Forinstance, credentials-based authentication or single sign-on with a Microsoft
account could be used. A user can link a local Windows 8 account with his or her Microsoft account.
Then, whenthe usersignsinto a device using that Microsoft account, any Windows Store app that
supports Microsoft account sign-in can automatically detect that the useris already authenticated
and the app doesn'trequire the usertosignin app. The advantage of this approach overcredential
roamingis that the Microsoft account works for websites and apps, meaning that app developers
don't have to create theirown authentication system. Alternatively, apps could use the web
authentication brokerinstead. This allows apps to use internet authentication and authorization
protocols like Open Identification (OpenlD) or Open Authentication (OAuth) to connectto online
identity providers. Thisisolate's the user's credentials from the app, as the brokeris the facilitator
that communicates with the app. For more info see Managing userinfo.

Local caching of web service datashould be usedif you repeatedly access staticdata or data that
rarely changes, or when dataaccess is expensive in terms of creation, access, ortransportation. This
brings many benefitsincludingimproving app performance by storingrelevant data as close as
possible to the dataconsumer, and saving network and battery resources.

Managing application data in AdventureWorks Shopper

The AdventureWorks Shopperreferenceimplementation uses app datastores to store the user's
credentials and cached datafrom the web service. The user's credentials are roamed. For more info
see Storingdatain the app data stores and Roaming application data.

AdventureWorks Shopper provides access toits privacy policy inthe app's settings as displayed in
the Settings charm. The privacy policy is one of several entry pointsin the Settings charm, and
informs users of the personal information thatis transmitted, how thatinformationis used, stored,
secured, and disclosed. It describes the controls that users have overthe use and sharing of their
information and how they may access theirinformation. Formore info see Local application data.

AdventureWorks Shopperusesthe ASP.NET Web APItoimplementits web service, and performs
credentials-based authentication with this web service. This approach creates aweb service that can
communicate with abroad set of clientsincluding apps, browsers, or back-end services. Product
data fromthe web service is cached locally inthe temporary app datastore. For more info see
Accessing datathrough a web service and Caching data.

Storing data in the app data stores

Whenan app isinstalled, the system givesitits own per-user datastores forapplication datasuch as
settings andfiles. The lifetime of application datais tied to the lifetime of the app. If the app is
removed, all of the application datawill be lost.

http://msdn.microsoft.com/en-us/library/windows/apps/br229572.aspx

108

There are three datastoresfor application data:

e Thelocal data store is used for persistent datathat exists only on the device.

e Theroaming data store is used fordata that exists on all trusted devices on which the user
has installed the app.

e Thetemporary data store is used for data that could be removed by the system atany time.

You use the application data APl to work with application data with the system being responsiblefor
managingits physical storage.

Settingsin the app data store are storedin the registry. When you use the application data API,
registry accessis transparent. Within its app data store each app hasa root containerforsettings.
Your app can add settings and new containersto the root container.

Filesinthe app data store are storedin the file system. Within its app datastore, each app has
system-defined root directories—oneforlocal files, one for roamingfiles, and one fortemporary
files. Yourapp can add new filesand new directories to the root directory.

App settings and files can be local or roaming. The settings and files that your app adds to the local
data store are only present onthe local device. The system automatically synchronizes settings and
filesthatyourapp adds to the roaming data store on all trusted devices on which the user has
installed the app.

For more info see Accessing app datawith the Windows Runtime.

Local application data

Local application datashould be used to store data that needs to be preserved between application
sessions, anditis not suitable type orsize wise forroaming data. There is no size restriction on local
data.

In the AdventureWorks Shopperreference implementation only the SessionStateService class stores
datainthe local application datastore. Formore info see Handling suspend, resume, and activation.

For more info see Quickstart: Local application data.

Roaming application data

If you use roamingdata inyour app, and a user installs yourapp on multiple devices, Windows keeps
the application datain sync. Windows replicates roaming datato the cloud whenitis updated and
synchronizesthe datatothe othertrusted devices on which the appisinstalled. This provides a
desirable userexperience, sincethe app on different devices is automatically configured according
to the userpreferences onthe first device. Any future changes to the settings and preferences will
alsotransition automatically. Windows 8 can also transition session or state information. This
enables usersto continue touse anapp session that wasabandoned on one device when they
transferto a second device.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464917.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700361.aspx

109

Roaming data should be usedforall size-bound dataand settings that are used to preserve auser's
settings preferences aswell as app session state. Any datathat is only meaningful on aspecific
device, such asthe path to a local file, should not be roamed.

Each app has a quota forroamingapplication datathat is defined by the
ApplicationData.RoamingStorageQuota property. If your roaming data exceedsthe quotait won't
roam until its size isless than the quotaagain. In AdventureWorks Shopper, we wanted to use
roaming data to transfer partially completed shopping cart data to other devices when the initial
deviceisabandoned. However, this was not feasible due to the enforced quota. Instead, this
functionalityis provided by the web service that the AdventureWorks Shopper reference
implementation connectsto. The datathat roams in AdventureWorks Shopper are the user's

credentials.

Note Roamingdataforan app isavailableinthe cloudaslongas itisaccessed by the userfrom
some device within 30 days. If the userdoes notrun an app for longerthan 30 days, its roaming data
isremoved fromthe cloud. If the user uninstalls an app, its roaming data isn't automatically
removed fromthe cloud. If the userreinstalls the app within 30days, the roaming datais
synchronized from the cloud.

Windows 8 roams app data opportunistically and soan instant syncis not guaranteed. Fortime
critical settings aspecial high priority settings unitis available that provides more frequent updates.
Itislimitedto one specificsettingthat must be named "HighPriority." It can be a composite setting,
but the total size is limited to 8KB. This limitis not enforced and the setting will be treated asa
regularsetting, meaningthatitwill be roamed underregular priority, in case the limitis exceeded.
However, if you are usinga high latency network, roaming could still be significantly delayed.

For more info see Guidelines forroaming application data.

Storing and roaming user credentials

Apps can store the user's passwordin the credential locker by using the
Windows.Security.Credentials namespace. The credential locker provides acommon approach for
storingand managing passwordsin a protected store. However, passwords should onlybe saved in
the credential lockerif the userhas successfully signedin and opted to save passwords.

Note The credential lockershould only be used forstoring passwords and not for otheritems of
data.

A credential inthe credential lockeris associated with a specificapp orservice. Apps and services do
not have access to credentials associated with other apps orservices. The credential locker from one
trusted device isautomatically transferred to any other trusted device for that user. This means that
credential roamingis enabled by default for credentials storedin the credential lockeron non -
domainjoined devices. Credentials from local connected accounts on domain-joined computers can
roam. However, domain-connected accounts are subject to roaming restrictions if the credentials
have only been saved onthe domain-joined device.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdata.roamingstoragequota.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.aspx

110

You can enable credentialroaming by connecting your device to the cloud by using your Microsoft
account. Thisallows your credentials toroamto all of yourtrusted devices wheneveryou signin
with a Microsoftaccount.

Note Data storedinthe credential lockerwillonly roamif a user has made a device trusted.

The ICredentialStore interface, provided by the Microsoft.Practices.Prism.StoreApps library, defines
method signaturesforloading and saving credentials. The following code example shows this

interface.

C#: Microsoft.Practices.Prism.StoreApps\ICredentialStore.cs

public interface ICredentialStore

{
void SaveCredentials(string resource, string userName, string password);
PasswordCredential GetSavedCredentials(string resource);
void RemoveSavedCredentials(string resource);

}

Thisinterface isimplemented by the RoamingCredentialStore class in the AdventureWorks.UlLogic
project.

The userisinvited to entertheir credentials onthe signin Flyout, which can be invoked from the
Settings charm, or on the signin dialog. When the userselects the Submitbutton on the
SigninFlyOut view, the SignInCommand in the SigninFlyOutViewModel class is executed, whichin
turns calls the SigninAsync method. This method then calls the SignlnUserAsync method onthe
AccountService instance, which in turn calls the LogOnAsync method on the IdentityServiceProxy
instance. The instance of the AccountService classis created by the Unity dependency injection
container. Then, provided that the credentials are valid and the user has opted to save the
credentials, they are stored in the credential locker by callingthe SaveCredentials method in the
RoamingCredentialStore instance. The following code example shows how the
RoamingCredentialStore classimplements the SaveCredentials method to save the credentialsin
the credential locker.

C#: AdventureWorks.UILogic\Services\RoamingCredentialStore.cs

public void SaveCredentials(string resource, string userName, string password)

{

var vault = new PasswordVault();
RemoveAllCredentialsByResource(resource, vault);

// Add the new credential
var passwordCredential = new PasswordCredential(resource, userName, password);
vault.Add (passwordCredential);

http://go.microsoft.com/fwlink/p/?LinkID=290899

111

The SaveCredentials method creates anew instance of the PasswordVault class that representsa
credential locker of credentials. The old stored credentials forthe app are retrieved and re moved
before the new credentials are added to the credential locker.

For more infosee Credential Locker Overview and Storing user credentials.

Temporary application data

Temporary application datashould be using for storing temporary information during an application
session. The temporary datastore works like a cache and itsfiles do not roam. The System
Maintenance task can automatically delete dataat this location at any time, and the user could also
clearfiles fromthe temporary datastore using Disk Cleanup.

For more info about how AdventureWorks Shopper uses the temporary app datastore see Caching
data.

Exposing settings through the Settings charm

The Settings charmis a fundamental part of any Windows Store app, and is used to expose app
settings. Itisinvoked by making a horizontal edge gesture, swiping left with afingerorstylusfrom
the right of the screen. This displays the charms and you can then select the Settings charmto
display the Settings pane. The Settings pane includes both app and system settings.

The top part of the Settings pane lists entry points for yourapp settings. Each entry pointopensa
settings Flyoutthat displays the settings themselves. Entry points let you create categories of
settings, grouping related controls together. Windows provides the Permissions and Rate and
review entry points forappsthat have beeninstalled through the Windows Store. Side-loaded apps
do not have the Rate and review entry point. The following diagram shows the top part of the
default Settings pane for AdventureWorks Shopper.

Settings

Login

Privacy Policy

Permissions

http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj554668.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465069.aspx

112

Additional app settings are shown whenauserisloggedintothe app. The bottom part of the
Settings pane includes device settings provided by the system, such as volume, brightness, and
power.

In orderto customize the default Settings pane you can add a SettingsCommand that representsa
settings entry. Inthe AdventureWorks Shopperreference implementation thisis performed by the
MvvmAppBase class in the Microsoft.Practices.Prism.StoreApps library. The InitializeFrameAsync
method inthe MvvmAppBase class subscribes to the CommandsRequested event of the
SettingsPane class that is raised when the user opens the Settings pane. Thisis shownin the
following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

SettingsPane.GetForCurrentView().CommandsRequested += OnCommandsRequested;

When the eventisraised the OnCommandsRequested event handlerin the MvvmAppBase class
creates a SettingsCommand collection, as shown in the following code example.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private void OnCommandsRequested(SettingsPane sender,
SettingsPaneCommandsRequestedEventArgs args)

{
if (args == null || args.Request == null ||
args.Request.ApplicationCommands == null)
{
return;
}
var applicationCommands = args.Request.ApplicationCommands;
var settingsCharmActionItems = GetSettingsCharmActionItems();
foreach (var item in settingsCharmActionItems)
{
var settingsCommand = new SettingsCommand(item.Id, item.Title,
(o) => item.Action.Invoke());
applicationCommands.Add (settingsCommand);
}
}

This method creates a SettingsCommand for each SettingsCharmActionltem and adds each
SettingsCommand to the ApplicationCommands. All the SettingsCommands will be shown on the
Settings pane before the Permissions entry point. The SettingsCharmActionltem class is provided by
the Microsoft.Practices.Prism.StoreApps library.

The SettingsCharmActionltems for the app are defined by the GetSettingsCharmActionltems
override inthe App class, as showninthe following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspane.commandsrequested.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspane.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspanecommandsrequest.applicationcommands.aspx

113

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

protected override IList<SettingsCharmActionItem> GetSettingsCharmActionItems()

{

var settingsCharmItems = new List<SettingsCharmActionItem>();
var accountService = _container.Resolve<IAccountService>();

var resourcelLoader = _container.Resolve<IResourcelLoader>();
if (accountService.SignedInUser == null)
{

settingsCharmItems.Add(
new SettingsCharmActionItem(resourcelLoader.GetString("LoginText"),
() => FlyoutService.ShowFlyout("SignIn")));

else

settingsCharmItems.Add(new SettingsCharmActionItem(resourcelLoader
.GetString("LogoutText"), () => FlyoutService.ShowFlyout("SignOut")));
settingsCharmItems.Add(new SettingsCharmActionItem(resourcelLoader
.GetString ("AddShippingAddressTitle"),
() => NavigationService.Navigate("ShippingAddress", null)));
settingsCharmItems.Add(new SettingsCharmActionItem(resourcelLoader
.GetString("AddBillingAddressTitle"),
() => NavigationService.Navigate("BillingAddress", null)));
settingsCharmItems.Add(new SettingsCharmActionItem(resourcelLoader
.GetString ("AddPaymentMethodTitle"),
() => NavigationService.Navigate("PaymentMethod", null)));
settingsCharmItems.Add(new SettingsCharmActionItem(resourcelLoader
.GetString("ChangeDefaults"),
() => FlyoutService.ShowFlyout("ChangeDefaults")));
}
settingsCharmItems.Add(new SettingsCharmActionItem(resourcelLoader
.GetString("PrivacyPolicy"),
async () => await Launcher.LaunchUriAsync(
new Uri(resourcelLoader.GetString("PrivacyPolicyUrl™)))));

return settingsCharmItems;

Each SettingsCharmActionltem allows one of three possible actions to occur—a Flyout to be shown,
in-app navigation to take place, oran external hyperlink to be launched.

When a user selects the Login entry point, the SigninFlyout must be displayed. This Flyout class

derives fromthe FlyoutView class in the Microsoft.Practices.Prism.StoreApps library. The
FlyoutView class uses a Popup control to display the Flyout. The Popup control provides the light
dismiss behaviorthat's seenthroughout Windows 8. Therefore, when the userselects a Ul element
that is not part of the Flyout, the Flyout automatically dismisses itself.

The FlyoutView class subscribes tothe Activated event of the Window class in the Open method to
ensure thatwhenthe Window s deactivated, the Popupis dismissed correctly. The following code

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.popup.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.activated.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.popup.aspx

114

example shows the OnPopupClosed and OnWindowActivated event handlersin the FlyOutView
class.

C#: Microsoft.Practices.Prism.StoreApps\Flyouts\FlyOutView.cs

private void OnPopupClosed(object sender, object e)

{
_popup.Child = null;
Window.Current.Activated -= OnWindowActivated;
if (_wasSearchOnKeyboardInputEnabled)
{
SearchPane. GetForCurrentView().ShowOnKeyboardInput = true;
¥
b

private void OnWindowActivated(object sender,
Windows .UI.Core.WindowActivatedEventArgs e)

{
if (e.WindowActivationState == Windows.UI.Core.CoreWindowActivationState
.Deactivated)
{
Close();
}
}

The OnWindowActivated event handler calls the Close method, to close the Popup control if the
Window is deactivated. Inturn, this calls the OnPopupClosed event handler which removes the
subscription to the Activated eventin orderto preventamemoryleak, and enablestype tosearch
functionality. Formore info about type to search functionality, see Implementing search.

For more info see Guidelines for app settings.

Using model classes as data transfer objects

Using the Model-View-ViewModel pattern describes the Model-View-ViewModel (MVVM) pattern
used in AdventureWorks Shopper. The modelelements of the pattern are containedinthe
AdventureWorks.UlLogicand AdventureWorks.WebServices projects, which represent the domain

entitiesusedinthe app. The following diagram shows the key model classesin the
AdventureWorks.UlLogic project, and the relationships between them.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.popup.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.activated.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx

115

w | # ShoppingCartitems & | # Product

ShoppingCart .| ShoppingCartItem Product v
Class | Class Class
¥ ShoppingCart F eroducts i " Froducts
F Billingaddress =
@ + Address w £
Order # shippingaddress | Class Category SearchResult
» —»\alidateBindableBase Class Class
F Subcategaries
F ShippingMethaod .| shippingMethod %3
Class LogOnResult =
Class
F Userlnfo
F PaymentMethad PaymentMethod v P E
+ Class Userlnfo L]
: UserInfo
—+\alidateBindableBase Class
F MewUserinfo | F Clduserinfo
UserValidationResult ¥ UserChangedEventArgs *
Class Class
—+EventArgs

The repository and controller classes in the AdventureWorks.WebServices project accept and return
the majority of these model objects. Therefore, they are used as data transfer objects (DTOs) that
hold all the data that is passed between the app and the web service. ADTO is a containerfora set
of aggregated datathat needsto be transferred across a network boundary. DTOs should contain no
businesslogicand limittheirbehaviorto activities such as validation.

The benefits of using DTOs to pass data to and receive datafrom a web service are that:

e By transmitting more dataina single remote call, the app can reduce the number of remote
calls. In most scenarios, aremote call carrying a largeramount of data takes virtually the
same time as a call that carries only a small amount of data.

e Passingmore data in a single remote call more effectively hides the internals of the web
service behind a coarse-grained interface.

e Defininga DTO can helpinthe discovery of meaningful business objects. When creating
DTOs, you often notice groupings of elements that are presented toa useras a cohesive set
of information. Often these groups serve as useful prototypes for objects that describe the
business domainthat the app deals with.

e Encapsulatingdataintoa serializable object canimprove testability.

Accessing data through a web service

Web services extend the World Wide Web infrastructure to provide the means for software to
connectto othersoftware apps. Apps access web services via ubiquitous web protocols and data
formats such as HTTP, XML, SOAP, withno need to worry about how the web service is

implemented.

Connectingtoa web service froma Windows Store app introduces a set of development challenges:

116

e The app must minimizethe use of network bandwidth.

e Theapp must minimizeitsimpactonthe device's battery life.

e Thewebservice mustofferanappropriate level of security.

e Thewebservice mustbe easyto develop against.

e The webservice should potentially supportarange of client platforms.

These challenges willbe addressed in the following sections.
Consumption

The AdventureWorks Shopper referenceimplementation stores datain an in-memory database
that's accessed through a web service. The app mustbe able to send data to and receive datafrom
the webservice. Forexample, it must be able toretrieve product datain orderto displayittothe
user,and it must be able to retrieve and send billing data and shopping cart data.

Users may be using AdventureWorks Shopperinalimited bandwidth environment, and so the
developers wanted to limit the amount of bandwidth used to transfer databetweenthe app and the
web service. In addition to this, the developers wanted to ensure that the datatransferisreliable.
Ensuring that data reliably downloads from the web service isimportantin ensuringagood user
experience and hence maximizingthe number of potential orders that will be made. Ensuring that
shopping cartdata reliably uploadsto the web service isimportantin orderto maximize actual
orders, and their correctness.

The developers also wanted a solution that was simple toimplement, and that could be easily
customizedinthe future if, for example, authentication requirements were to change. In addition,
the developers wanted asolution that could potentially work with platforms other than Windows 8.

With these requirementsin mind, the AdventureWorks Shopper team had to considerthree
separate aspects of the solution: how to expose datafromthe web service, the format of the data
that moves betweenthe web serviceand the app, and how to consume web service datain the app.

Exposing data

The AdventureWorks Shopper referenceimplementation usesthe ASP.NET Web APItoimplement
its web service, and performs credentials-based authentication with this web service. Thisapproach
createsaresource-oriented web service thatis activated through simple action-oriented verbs such
as GET, and that can respond by sending contentin avariety of formats such as HTML, XML, a JSON
string, or binary data. The web service can communicate with a broad set of clientsincluding apps,
browsers, orback-end services. In addition, it offers the advantagethatif the input or output model
for the service changesin future, the app simply hasto change the query stringthat is sent to the
web service, or parse the data received from the web service differently.

117

Data formats

The AdventureWorks Shopperreferenceimplementation uses the JSON format to transferorder
data to the web service, and to cache web service datalocally on disk, because it produces a
compact payload thatreduces bandwidth requirements andis relatively easy to use.

The AdventureWorks developers considered compressing data before transferringittothe web
service inorderto reduce bandwidth utilization, but decided that the additional CPUand battery
usage on devices would outweigh the benefits. You should evaluate this tradeoff between the cost
of bandwidth and battery consumptionin yourapp before you decide whetherto compress datayou
need to move overthe network.

Note Additional CPU usage affects boththe responsiveness of the deviceand its battery life.
For more info about caching see Caching data.
Consumingdata

Analysis of the datatransferrequirements revealed only limited interactions with the web service,
so AdventureWorks Shopperimplements a set of custom DTO classes to handle the datatransfer
with the web service. Formore info see Using model classes as datatransferobjects. Inorderto
furtherreduce the interaction with the web service, as much dataas possibleisretrievedinasingle

callto it. Forexample, instead of retrieving product categoriesin one web service call, and then
retrieving products foracategoryin a second web service call, AdventureWorks Shopper retrieves a
category and its productsin a single web service call.

In the future, AdventureWorks may decideto use the OData protocol in orderto use features such
as batching and conflict resolution.

Note AdventureWorksShopperdoesnotsecure the web service with Secure Sockets Layer (SSL), so
a malicious client could impersonate the app and send malicious data. Inyourown app, you should
protectany sensitivedatathatyou needtotransferbetween the app and a web service by using SSL.

The following diagram shows the interaction of the classes thatimplement reading product category
data for the hub page in AdventureWorks Shopper.

118

AWShopper
web service

CategoryController

AWShopper app

HubPFageviewModel TemporaryFolderCacheService

| System. et Hetp. HetpClient

1
ProductCatalogRepository : | ProductCatalogServiceFroxy ‘
1

T

|
|
|
|
|
|
|
I
|
I
I
T |
1
[} H :
GetRootCategoriesasyns :
* |
|
GetDatadsync !
» i
[no valid data in cache] I
GetCategoriesAsync i
I
|
|
GetAsync |
|
i
GetCategories
™
I
C.!tEgEIFiES
+ /T
read i
response |
I
|
I
response I
]
[ne valid data in cache] |
SaveDatassync 1
|
|
I
categarles |
- |

The ProductCatalogRepositoryis used to manage the data retrieval process, either from the web
service orfrom a temporary cache stored on disk. The ProductCatalogServiceProxy classis used to
retrieve product category datafromthe web service, with the TemporaryFolderCacheService class
being usedtoretrieve product category datafromthe temporary cache.

In the Onlnitialize method in the App class, the ProductCatalogRepository class isregisteredasa
type mappingagainst the IProductCatalogRepository type with the Unity dependencyinjection
container. Similarly, the ProductCatalogServiceProxy class is registered as a type mapping against
the IProductCatalogService type. Then, when aview model class such as the HubPageViewModel
class accepts an IProductCatalogRepository type, the Unity container will resolve the type and
return an instance of the ProductCatalogRepository class.

When the HubPage is navigated to, the OnNavigatedTo method in the HubPageViewModel class is
called. The following example shows code from the OnNavigatedTo method, which usesthe
ProductCatalogRepository instance to retrieve category datafordisplay on the HubPage.

Ci#t: AdventureWorks.UlLogic\ViewModels\HubPageViewModel.cs

rootCategories = await _productCatalogRepository.GetRootCategoriesAsync(5);

The call to the GetRootCategoriesAsync method specifies the maximum amount of products to be
returnedforeach category. This parameter can be used to optimize the amount of data returned by
the web service, by avoiding returning anindeterminate number of products foreach category.

119

The ProductCatalogRepository class, whichimplements the IProductCatalogRepository interface,
usesinstances of the ProductCatalogServiceProxy and TemporaryFolderCacheService classes to
retrieve datafordisplay onthe Ul. The following code example shows the GetSubCategoriesAsync
method, whichis called by the GetRootCategoriesAsync method, to asynchronously retrieve data
from eitherthe temporary cache on disk, orfrom the web service.

C#: AdventureWorks.UILogic\Repositories\ProductCatalogRepository.cs

public async Task<ReadOnlyCollection<Category>> GetSubcategoriesAsync(
int parentId, int maxAmountOfProducts)

{
string cacheFileName = String.Format("Categories-{0}-{1}", parentId,
maxAmountOfProducts) ;

try
{

// Case 1: Retrieve the items from the cache
return await _cacheService
.GetDataAsync<ReadOnlyCollection<Category>>(cacheFileName);

}
catch (FileNotFoundException)

1

// Retrieve the items from the service
var categories = await _productCatalogService
.GetCategoriesAsync(parentId, maxAmountOfProducts);

// Save the items in the cache
await _cacheService.SaveDataAsync(cacheFileName, categories);

return categories;

The method first calls the GetDataAsync method in the TemporaryFolderCacheService class to
checkif the requested dataexistsinthe cache, andif it does, whetherit has expired or not.
Expirationis judged to have occurred if the data is presentinthe cache, butit is more than5
minutesold. If the dataexistsinthe cache and hasn't expireditis returned, otherwise a
FileNotFoundException is thrown. If the data does not existin the cache, orif it exists and has

expired, acall tothe GetCategoriesAsync method in the ProductCatalogServiceProxy class retrieves
the data from the web service before itis cached.

The ProductCatalogServiceProxy class, which implements the IProductCatalogServiceinterface, is
usedto retrieve product datafrom the web service if the datais not cached, or the cached data has
expired. The following code example show the GetCategoriesAsync method thatisinvoked by the
GetSubCategoriesAsync method in the ProductCatalogRepository class.

http://msdn.microsoft.com/en-us/library/windows/apps/system.io.filenotfoundexception.aspx

120

C#: AdventureWorks.UIlLogic\Services\ProductCatalogServiceProxy.cs

public async Task<ReadOnlyCollection<Category>> GetCategoriesAsync(
int parentId, int maxAmountOfProducts)

using (var httpClient = new HttpClient())
{

var response = await httpClient.GetAsync(
string.Format ("{0}?parentId={1}&maxAmountOfProducts={2}",
_categoriesBaseUrl, parentId, maxAmountOfProducts));

response.EnsureSuccessStatusCode();

var result = await response.Content
.ReadAsAsync<ReadOnlyCollection<Category>>();

return result;

This method asynchronously retrieves the product categories from the web service by using the
HttpClient class to send HTTP requests and receive HTTP responses from a URI. The call to
HttpClient.GetAsyncsends a GET request to the specified URI asan asynchronous operation, and
returns a Task of type HttpResponseMessage that represents the asynchronous operation. The

returned Task will complete after the content fromthe response is read. Formore info about the
HttpClient class see Quickstart: Connecting using HttpClient.

When the GetCategoriesAsync method calls HttpClient.GetAsync this callsthe GetCategories

methodinthe CategoryControllerclassinthe AdventureWorks.WebServices project, which is shown
inthe following code example.

C#: AdventureWorks.WebServices\Controllers\CategoryController.cs

public IEnumerable<Category> GetCategories(int parentId, int maxAmountOfProducts)

{

var categories = _categoryRepository.GetAll()
.Where(c => c.ParentId == parentld);

var trimmedCategories = categories.Select(NewCategory).ToList();
FillProducts (trimmedCategories);

foreach (var trimmedCategory in trimmedCategories)

{
var products = trimmedCategory.Products.ToList();
if (maxAmountOfProducts > 0)
{
products = products.Take(maxAmountOfProducts).ToList();
}
trimmedCategory.Products = products;
}

return trimmedCategories;

http://msdn.microsoft.com/en-us/library/windows/apps/system.net.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh158944.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.net.http.httpresponsemessage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781239.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh158944.aspx

121

This method uses an instance of the CategoryRepository classto return a static collection of
Category objects that contain the category data returned by the web service.

Caching data

The TemporaryFolderCacheService class is used to cache data fromthe web service to the
temporary app data store. This service is used by the ProductCatalogRepository class to decide
whethertoretrieve productsfromthe web service, orfromthe cache inthe temporary app data
store.

As previously mentioned, the GetSubCategoriesAsync method in the ProductCatalogRepository
classis usedto asynchronously retrieve datafrom the product catalog. When it does thisitfirst
attemptsto retrieve cached data from the temporary app data store by callingthe GetDataAsync
method, whichisshowninthe following code example.

C#: AdventureWorks.UlILogic\Services\TemporaryFolderCacheService.cs

public async Task<T> GetDataAsync<T>(string cachekey)
{

await CacheKeyPreviousTask(cacheKey);

var result = GetDataAsyncInternal<T>(cacheKey);
SetCacheKeyPreviousTask(cacheKey, result);
return await result;

private async Task<T> GetDataAsyncInternal<T>(string cacheKey)

{
StorageFile file = await _cacheFolder.GetFileAsync(cacheKey);
if (file == null) throw new FileNotFoundException("File does not exist");

// Check if the file has expired
var fileBasicProperties = await file.GetBasicPropertiesAsync();
var expirationDate = fileBasicProperties.DateModified
.Add(_expirationPolicy) .DateTime;
bool fileIsValid = DateTime.Now.CompareTo(expirationDate) < ©;
if (!fileIsValid) throw new FileNotFoundException("Cache entry has expired.");

string text = await FileIO.ReadTextAsync(file);
var toReturn = Deserialize<T>(text);

return toReturn;

The CacheKeyPreviousTask method ensuresthatsince only one I/O operation at atime may access
a cache key, cache read operations always wait for the prior task of the current cache key to
complete before they start. The GetDataAsynclnternal methodis called tosee if the requested data
existsinthe cache, and ifitdoes, whetherit has expired or not.

122

The SaveDataAsync method in the TemporaryFolderCacheService class saves dataretrieved from
the web service to the cache, andis showninthe following code example.

C#: AdventureWorks.UILogic\Services\TemporaryFolderCacheService.cs

public async Task SaveDataAsync<T>(string cacheKey, T content)

{

await CacheKeyPreviousTask(cacheKey);

var result = SaveDataAsyncInternal<T>(cacheKey, content);
SetCacheKeyPreviousTask(cacheKey, result);

await result;

}

private async Task SaveDataAsyncInternal<T>(string cacheKey, T content)

{

StorageFile file = await _cacheFolder.CreateFileAsync(cacheKey,
CreationCollisionOption.ReplaceExisting);

var textContent = Serialize<T>(content);
await FileIO.WriteTextAsync(file, textContent);

As with the read operations, since only one |/O operation at a time may access a cache key, cache
write operations always wait forthe priortask of the current cache key to complete before they
start. The SaveDataAsynclnternal method s called to serialize the datafromthe web service tothe
cache.

Note AdventureWorks Shopperdoes notdirectly cache images fromthe web service. Instead, we
rely on the Image control’s ability to cache images and display themif the serverresponds with an
image.

Authentication

The AdventureWorks Shopper web service needs to know the identity of the userwho places an
order. The app externalizes as much of the authentication functionality as possible. This provides the
flexibility to make changestothe approach used to handle authentication in the future without
affectingthe app. For example, the approach could be changed to enable userstoidentify
themselves by using a Microsoft account. It's also important to ensure that the mechanism that the
app usesto authenticate usersis easy toimplement on other platforms.

Ideally the web serviceshould use aflexible, standards-based approach to authentication. However,
such an approachis beyond the scope of this project. The approach adopted here is that the app
requests a password challenge string from the web servicethatit then hashes using the user's
password as the key. This hashed datais then sentto the web service where it'scompared againsta
newly computed hashed version of the password challenge string, using the user's password stored
inthe web service as the key. Authentication only succeeds if the app and the web service have
computed the same hash for the password challenge string. This approach avoids sending the user's
passwordto the web service.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx

123

Note Inthe future, the app could replace the simple credentials authentication system with a
claims-based approach. One optionis to use the Simple Web Token and OAuth 2.0 protocol. This
approach offers the following benefits:

e Theauthentication processis managed externally from the app.
e Theauthentication process uses established standards.
e Theapp can use a claims-based approach to handle any future authorization requirements.

The followingillustration shows the interaction of the classes thatimplement credentials-based
authenticationinthe AdventureWorks Shopper reference implementation.

AWShopper web service

[dentity Controller

AWShopper app

SlgninFlyoutWViewMaodel | | IdentityServiceProxy ‘

T
AccountService

‘ System.Net. Http. HttpClient |

SignInUserAsync
LagOnasync

I
|
I
I
|
I
I
|
I
1
|
I
I
|
I
I
:
I
GetAsync |

GetPasswordChallenge

I ¥
I
Encoded password challenge
read response L R]

i
I
GetAsync !

GetlsValid
ST
I

Userlnfo
i

read response

response

Credentials-based userauthenticationis performed by the AccountService and IdentityServiceProxy
classesinthe app, and by the IdentityController class in the web service. In the Onlnitialize method
inthe App class the AccountService classis registered as atype mapping againstthe
IAccountService type with the Unity dependency injection container. Then, when aview model class
such as the SignInFlyoutViewModel class accepts an IAccountService type, the Unity containerwill
resolve the type and return an instance of the AccountService class.

When the user selects the Submit button on the SigninFlyout, the SigninCommand in the
SigninFlyOutViewModel class is executed, which in turn calls the SignInAsync method. This method
then calls the SigninUserAsync method on the AccountService instance. If the signinis successful,
the SigninFlyOutview is closed. The following code example shows part of the SigninUserAsync
method in the AccountService class.

C#: AdventureWorks.UILogic\Services\AccountService.cs

var result = await _identityService.LogOnAsync(userName, password);

124

The SigninUserAsync method calls the LogOnAsync method inthe instance of the

IdentityServiceProxy class that's injected into the AccountService constructor from the Unity

dependency injection container. The IdentityServiceProxy class, which implements the

lidentityService interface, uses the LogOnAsync method to authenticate usercredentials with the

web service. The following code example shows this method.

C#: AdventureWorks.UlILogic\Services\ldentityServiceProxy.cs

public async Task<LogOnResult> LogOnAsync(string userId, string password)

{

using (var handler = new HttpClientHandler
{ CookieContainer = new CookieContainer() })

using (var client = new HttpClient(handler))
{

// Ask the server for a password challenge string

var requestId = CryptographicBuffer
.EncodeToHexString (CryptographicBuffer.GenerateRandom(4));

var challengeResponse = await client.GetAsync(_clientBaseUrl +
"GetPasswordChallenge?requestId=" + requestId);

challengeResponse.EnsureSuccessStatusCode();

var challengeEncoded = await challengeResponse.Content
.ReadAsAsync<string>();

var challengeBuffer = CryptographicBuffer
.DecodeFromHexString(challengeEncoded);

// Use HMAC_SHA512 hash to encode the challenge string using the

// password being authenticated as the key.

var provider = MacAlgorithmProvider
.OpenAlgorithm(MacAlgorithmNames.HmacSha512);

var passwordBuffer = CryptographicBuffer
.ConvertStringToBinary(password, BinaryStringEncoding.Utf8);

var hmacKey = provider.CreateKey(passwordBuffer);

var buffHmac = CryptographicEngine.Sign(hmacKey, challengeBuffer);

var hmacString = CryptographicBuffer.EncodeToHexString(buffHmac);

// Send the encoded challenge to the server for authentication (to

// avoid sending the password itself)

var response = await client.GetAsync(_clientBaseUrl + userId +
"?requestID=" + requestId +"&passwordHash=" + hmacString);

// Raise exception if sign in failed
response.EnsureSuccessStatusCode();

// On success, return sign in results from the server response packet

var result = await response.Content.ReadAsAsync<UserInfo>();
var serverUri = new Uri(Constants.ServerAddress);

return new LogOnResult { ServerCookieHeader = handler.CookieContainer

.GetCookieHeader(serverUri), UserInfo = result };

125

This method generates arandomrequestidentifierthatis encoded asa hexstringand sentto the
web service. The GetPasswordChallenge method in the IdentityController classin the
AdventureWorks.WebServices project receives the requestidentifierand responds witha
hexadecimalencoded password challenge stringthat the app reads and decodes. The app then
hashesthe password challenge with the HMACSHA512 hash function, using the user's password as
the key. The hashed password challenge is then sentto the web service forauthentication by the
GetlsValid methodinthe IdentityController class in the AdventureWorks.WebServices project. If
authentication succeeds, a new instance of the LogOnResult class is returned by the method.

The LogOnAsync method communicates with the web service through calls to HttpClient.GetAsync,

which sends a GET request to the specified URI as an asynchronous operation, and returns a Task of
type HttpResponseMessage that represents the asynchronous operation. The returned Task will
complete afterthe contentfromthe responseisread. Formore info about the HttpClient class see

Quickstart: Connecting using HttpClient.

The IdentityController class, inthe AdventureWorks.WebServices project, is responsiblefor sending
hexadecimalencoded password challenge strings to the app, and for performing authentication of
the hashed password challengesitreceives fromthe app. The class contains a static Dictionary
named Identities that contains the valid credentials for the web service. The following code example
shows the GetlsValid methodin the IdentityController class.

C#: AdventureWorks.WebServices\Controllers\ldentityController.cs

public UserInfo GetIsValid(string id, string requestId, string passwordHash)
{
byte[] challenge = null;
if (requestId != null & & ChallengeCache.Contains(requestId))
{
// Retrieve the saved challenge bytes
challenge = (byte[])ChallengeCache[requestld];
// Delete saved challenge (each challenge is used just one time).
ChallengeCache.Remove(requestId);

}

lock (Identities)
{
// Check that credentials are valid.
if (challenge !'= null && id != null && passwordHash != null &&
Identities.ContainsKey(id))

// Compute hash for the previously issued challenge string using the
// password from the server's credentials store as the key.
var serverPassword = Encoding.UTF8.GetBytes(Identities[id]);
using (var provider = new HMACSHA512(serverPassword))
{
var serverHashBytes = provider.ComputeHash(challenge);
// Authentication succeeds only if client and server have computed
// the same hash for the challenge string.
var clientHashBytes = DecodeFromHexString(passwordHash);
if (!serverHashBytes.SequenceEqual(clientHashBytes))

http://msdn.microsoft.com/en-us/library/windows/apps/system.security.cryptography.hmacsha512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh158944.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.net.http.httpresponsemessage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.net.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781239.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xfhwa508.aspx

126

throw new HttpResponseException(HttpStatusCode.Unauthorized);

if (HttpContext.Current != null)
FormsAuthentication.SetAuthCookie(id, false);
return new UserInfo { UserName = id };

}

else

{
throw new HttpResponseException(HttpStatusCode.Unauthorized);

}

This methodis called in response to the LogOnAsync method sending a hashed password challenge
stringto the web service. The method retrieves the previously issued password challenge string that
was sentto the app, and thenremovesitfromthe cache as each password challenge stringis used
onlyonce. Theretrieved password challenge isthen hashed with the HMACSHA512 hash function,
usingthe user's password stored inthe web service as the key. The newly computed hashed
password challenge stringis then compared against the hashed challenge string received from the
app. Authentication only succeedsif the app and the web service have computed the same hash for

the password challenge string, in which case anew Userinfo instance containing the user name is
returnedto the LogOnAsync method.

Note The Windows Runtime includes APIs that provide authentication, authorization and data
security. Forexample, the AdventureWorks Shopperreference implementation uses the
MacAlgorithmProvider class to securely authenticate user credentials overan unsecured channel.
However, thisis only one choice among many. For more info see Introduction to Windows Store app

security.

http://msdn.microsoft.com/en-us/library/windows/apps/system.security.cryptography.hmacsha512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.macalgorithmprovider.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464989.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464989.aspx

127

Handling suspend, resume, and activation in AdventureWorks
Shopper (Windows Store business apps using C#, XAML, and Prism)

Summary

e Saveapplication datawhenthe appisbeingsuspended.
e Use the savedapplication datatorestore the app whenneeded.

e Allowviewsandviewmodelstosave and restore state that's relevant to each by using the
MvvmAppBase class, the VisualStateAwarePage class, and the RestorableState custom
attribute, provided by the Microsoft.Practices.Prism.StoreApps library.

The AdventureWorks Shopper referenceimplementation fully manages its execution lifecycle by
using Prism for the Windows Runtime, which helps to manage the execution lifecycle of Windows
Store apps that use the MVVM pattern. Suspension can happen atany time, and whenitdoesyou

needtosave your app's data so that the app can resume correctly.

You will learn

¢ How Windowsdeterminesanapp's execution state.

e How the app's activation history affectsits behavior.

¢ How toimplementsupportforsuspend, resume, and activation by using the
Microsoft.Practices.Prism.StoreApps library.

Applies to

e Windows Runtime for Windows 8
e CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

Windows Store apps should be designed to save theirstate and suspend when the userswitches
away fromthem. They could restore their state and resume when the user switches back tothem.
The followinglist summarizes the decisions to make when implementing suspend and resume in
your app:

e Shouldyourapp be activated through any contracts or extensions orwill it only be activated
by the userlaunchingit?

e Doesyourappneedto behave differently whenit's closed by the userratherthan wheniit's
closed by Windows?

o Doesyourappneedtoresume asthe userleftit, rather thanstartingit fresh, following
suspension?

e Doesyourappneedto start freshif a long period of time has e lapsed since the userlast
accessed it?

e Shouldyourapp update the Ul when resuming from suspension?

128

e Doesyourappneedto requestdatafroma networkorretrieve large amounts of datafrom
diskwhenlaunched?

Your app mustregistertoreceive the Activated eventin orderto participate in activation. If your
app needsto be activated through any contracts or extensions other than just normal launch by the
user, youcan use yourapp's Activated event handlerto test to see how the app was activated.
Examples of activation otherthan normal userlaunchinclude anotherapp launching afile whosefile
type yourapp is registered to handle, and your app being chosen asthe target for a share operation.
For more info see Activatingan app.

If your app needsto behave differently whenitis closed by the user, ratherthan whenitisclosed by
Windows, the Activated event handlercan be used to determine whetherthe app was terminated
by the user or by Windows. For more info see Activatingan app.

Following suspension, most Windows Store apps should resume as the userleftthemratherthan
starting fresh. Explicitly saving yourapplication data helps ensure that the user can resume yourapp
evenif Windows terminatesit. It's a best practice to have yourapp save its state wheniit's
suspended andrestore its state whenit's launched aftertermination. However, if your app was
unexpectedly closed, assumethat stored application datais possibly corrupt. The app should not try
to resume butratherstart fresh. Otherwise, restoring corrupt application data could lead to an
endless cycle of activation, crash, and being closed. For more info see Guidelines forapp suspend

and resume (Windows Store apps), Suspending an app, Resumingan app, and Activating an app.

Ifthere's a good chance that users won't remember or care about what was happeningwhenthey
last saw yourapp, launchit fromits defaultlaunch state. You must determine an appropriate period
after which yourapp should start fresh. Forexample, anews readerapp should start afreshif the
downloaded news articles are stale. However, if there is any doubt about whetherto resume orstart
fresh, youshould resume the app right where the userleft off. Formore info see Resumingan app

and Activating an app.

When resumingyourapp afterit was suspended, update the Ul if the content has changedsince it
was lastvisible tothe user. This ensures thatto the userthe app appears as thoughit was runningin
the background. For more info see Resumingan app.

If your app needstorequestdatafroma network orretrieve large amounts of datafrom disk, when
the app islaunched, these activities should be completed outside of activation. Use a custom loading
Ul or an extended splash screen whilethe app waits for these long running operations to finish. For
more info see How to activate an app.

Suspend and resume in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation was designed to suspend correctly when
the user moves away from it, or when Windows enters alow power state. It was also designed to
resume correctly when the user moves backtoit, or when Windows leaves the low power state.

http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465093.aspx

129

AdventureWorks Shopper uses the Microsoft.Practices.Prism.StoreApps library to provide both view

and view model supportforsuspend and resume. This was achieved by:

e Savingapplicationdatawhenthe appisbeingsuspended.

e Resumingthe appinthe state thatthe userleftitin.

e Savingthe page state to minimize the time required to suspend the app when navigating
away from a page.

e Allowingviewsandviewmodelsto save and restore state that's relevant to each. For
example, AdventureWorks Shopper saves the scroll position of certain GridView controls as
view state. Thisisachieved by overriding the SaveState and LoadState methods of the
VisualStateAwarePage classina view's class.

e Usingthe savedapplication datatorestore the app state, when the app resumes after being
terminated.

For moreinfo, see Guidelines forapp suspend and resume (Windows Store apps).

Understanding possible execution states

Which events occur whenyou activate an app depends onthe app's execution history. There are five
casesto consider. The cases correspond tothe values of the
Windows.ActivationModel.Activation.ApplicationExecutionState enumeration.

¢ NotRunning

e Terminated

¢ ClosedByUser
e Suspended

e Running

The following diagram shows how Windows determines an app's execution state. Inthe diagram,
the white rectanglesindicate thatthe appisn'tloadedinto system memory. The blue rectangles
indicate that the app isin memory. The dashed arcs are changes that occur without any notification
to the runningapp. The solid arcs are actions that include app notification.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx

130

App install, user login or
operating system reboot

-
%
]

i

*
Mot running/ —— Activate
Closed by user

Close
Activate __—* Running
{resume)
Terminated Suspend
Resumeg
®
\\h
h"“-.__,_ R Suspendad ‘

Tarminate

The execution state depends on the app's history. Forexample, when the user startsthe app for the
firsttime afterinstallingit or afterrestarting Windows, the previous execution state is NotRunning,
and the state afteractivationis Running. When activation occurs, the activation eventarguments
include a PreviousExecutionState property thatindicates the state the app was in before itwas
activated.

If the userswitchestoa differentapp or if the system enters alow power mode of operation,
Windows notifiesthe app thatit's being suspended. At this time, you must save the navigation state
and all user data that representsthe user's session. You should also free exclusive system resources,
like open filesand network connections.

Windows allows 5seconds foran app to handle the Suspending event. If the Suspending event
handlerdoesn't complete within thatamount of time, Windows behaves as though the app has
stopped respondingand terminatesit. Afterthe app responds tothe Suspending event, its state is
Suspended. If the user switches back to the app, Windows resumesitandallowsitto run again.

Windows might terminate an app, without notification, afterithas been suspended. Forexample, if
the device islow onresources it mightreclaim resources thatare held by suspended apps. If the
userlaunchesyourapp after Windows hasterminated it, the app's previous execution state at the
time of activation is Terminated.

You can use the previous execution state to determine whetheryourapp needstorestore the data
thatitsaved whenitwas last suspended, orwhetheryou mustload yourapp's default data. In
general, if the app stops responding orthe userclosesit, restarting the app should take the userto
the app's defaultinitial navigation state. When an appis activated after being terminated, it should
load the application data that it saved during suspension so thatthe app appears as it did whenit
was suspended.

When an app issuspended buthasn'tyet been terminated, you can resume the app without
additional work as it will still be in memory.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.previousexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx

131

For a description of the suspend and resume process, see Application lifecycle (Windows Store
apps). For more info about each of the possible previous execution states, see the
ApplicationExecutionState enumeration. You might also want to consult Guidelines forapp suspend

and resume (Windows Store apps) forinfo about the recommended userexperience forsuspend
and resume.

Implementation approaches for suspend and resume

For Windows Store apps such as the AdventureWorks Shopperreference implementation that use
the Microsoft.Practices.Prism.StoreApps library, implementing suspend and resume involves four
components:

e Windows Core. The CoreApplicationView class's Activated event allows an app to receive

activation-related notifications.

e XAML. The Application class provides the OnLaunched method thatyourapp's class should
override to perform applicationinitialization and to display the initial content. The
Application class invokes the OnLaunched method when the userstarts the app. Whenyou
create a new projectfora Windows Store app using one of the Visual Studio project
templatesforCHapps, Visual Studio creates an App class that derives from Application and
overrides the OnLaunched method. In MVVMapps such as AdventureWorks Shopper, much
of the Visual Studio created code in the App class has been moved to the MvvmAppBase
classthat the App class thenderives from.

e Microsoft.Practices.Prism.StoreApps classes. If you base your MVVM app on the reusable

classes of the Microsoft.Practices.Prism.StoreApps library, many aspects of suspend/resume
will be provided foryou. For example, the SessionStateService class will provide away to
save and restore state. If you annotate properties of yourview models with the
RestorableState custom attribute, they will automatically be saved and restored at the
correct time. The SessionStateService also interacts with the Frame class to save and restore
the app's navigation stack foryou.

e Yourapp's classes. View classes can save view state with each invocation of the

OnNavigatedFrom method. For example, some view classes in AdventureWorks Shopper
save userinterface state such as scroll bar position. Model state is saved by view model
classes, through the base ViewModel class.

Note A user can activate an app through a variety of contracts and extensions. The Application class
only callsthe OnLaunched methodinthe case of a normal launch. For more info about how to
detectotheractivation events see the Application class. Inthe AdventureWorks Shopper reference
implementation we handle both normal launch and launch through the Search contract.

AdventureWorks Shopperdoes notdirectly interact with the CoreApplicationView class's activation-

related events. We mentionthem here in case yourapp needs access to these lower-level
notifications.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.core.coreapplicationview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.core.coreapplicationview.aspx

132

Suspending an app

Suspension supportis provided by the Microsoft.Practices.Prism.StoreApps library. In orderto add
suspension support to an app thatderivesfromthe MvvmAppBase classin thislibrary, you only
need to annotate properties of view models that you wish to save during suspension with the
RestorableState custom attribute. Inaddition, if additional suspension logicis required you should
override the OnNavigatedFrom method of the base ViewModel class. The following diagram shows
the interaction of the classesthatimplementthe suspend operationin AdventureWorks Shopper.

Windmvs.ul.}(aml.ﬂpplltaunn‘ ‘ FrameMavigationService |

T
l
: MywmAppBase
l
|
|

SessionStateService

| Windows.Storage.StorageFile
T T T

I 1
= =
I 1
I 1
I |

Register for
Suspending
event

Suspending
event handler

Suspending
SessionStateForFrame

OnMavigatedFrom

Savehsync

Write navigation and
view model state

Here, the MvvmAppBase class registers ahandlerforthe Suspending eventthatis provided by the
Application base class.

Ci#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

this.Suspending += OnSuspending;

Windows invokes the OnSuspending event handler beforeitsuspendsthe app. The MvvmAppBase
classusesthe eventhandlertosave relevant app and user data to persistent storage.

Ci#t: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private async void OnSuspending(object sender, SuspendingEventArgs e)

{

IsSuspending = true;
try
{

var deferral = e.SuspendingOperation.GetDeferral();

// Bootstrap inform navigation service that app is suspending.
NavigationService.Suspending();

// Save application state
await SessionStateService.SaveAsync();

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

133

deferral.Complete();

}
finally
{
IsSuspending = false;
}

The OnSuspending event handlerisasynchronous. If a Suspending event's handlerisasynchronous,
it must notifyits callerwhenitswork has finished. Todo this, the handlerinvokes the GetDeferral
method thatreturns a SuspendingDeferral object. The Suspending method of the
FrameNavigationService classisthen called. The SessionStateService class's SaveAsync method
then persiststhe app's navigation and userdata to disk. Afterthe save operation hasfinished, the

Complete method of the SuspendingDeferral objectis called to notify the operating system that the
app isready to be suspended. The following code example shows the Suspending method of the
FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

public void Suspending()
{

NavigateFromCurrentViewModel(true);

The Suspending method of the FrameNavigationService class calls the
NavigateFromCurrentViewModel method that handlesthe suspension. The following code example
shows the NavigateFromCurrentViewModel method of the FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

private void NavigateFromCurrentViewModel(bool suspending)

{
var departingView = _frame.Content as FrameworkElement;
if (departingView == null) return;
var frameState = _sessionStateService.GetSessionStateForFrame(_frame);
var departingViewModel = departingView.DataContext as INavigationAware;
var viewModelKey = "ViewModel-" + _frame.BackStackDepth;
if (departingViewModel != null)
{
var viewModelState = frameState.ContainsKey(viewModelKey) ?
frameState[viewModelKey] as Dictionary<string, object> : null;
departingViewModel.OnNavigatedFrom(viewModelState, suspending);
}
}

The NavigateFromCurrentViewModel method gets the session state forthe currentview and calls
the OnNavigatedFrom method on the currentview model. All OnNavigatedFrom methods feature a

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.suspendingoperation.getdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingdeferral.complete.aspx

134

suspending parameterthattellsthe view modelwhetheritis beingsuspended. If the parameteris
true it meansthat no change should be made to state that would invalidate the page and thata
subsequent OnNavigatedTo method might not be called, forinstance if the app resumes without
beingterminated. This allows you to implement additional functionality in view model classes that
may be required when the OnNavigatedFrom method is called when the appisn'tbeing suspended.

In the NavigateFromCurrentViewModel method the frameState dictionary is the dictionary for the
frame. Each iteminthe dictionaryisa view model thatis at a specificdepthinthe frame back stack.
Each view model also has its own state dictionary, viewModelState, thatis passed to the view
model's OnNavigatedFrom method. This approachis preferableto each view model creating entries
inthe frameState dictionary using the view modelstype as the key.

All of the view model classes in the AdventureWorks Shopper reference implementation derive from
the ViewModel class, provided by the Microsoft.Practices.Prism.StoreApps library, thatimplements
the OnNavigatedFrom method. This method calls the FillStateDictionary method to add any view

model state tothe frame state, as shownin the following code example.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

public virtual void OnNavigatedFrom(Dictionary<string, object> viewModelState,
bool suspending)

{ if (viewModelState != null)
{
FillStateDictionary(viewModelState, this);
}
}

The FillStateDictionary method iterates through any propertiesinthe view modeland stores the
value of any properties that possess the [RestorableState] custom attribute.

In the AdventureWorks Shopper reference implementation we use the suspending parameterthat's
passed to the OnNavigatedFrom methodsin the view model classes, and the
MvvmAppBase.lsSuspending property that's used by view classes, to establish context when the
app receives callbacks from the SaveAsync method. We need to know if the OnNavigatedFrom
methodis calledinthe case of normal operation, orifitis being called while saving state inresponse
to a Suspending event. Forexample, when the user navigates away from the HubPage we want to
remove the redirection of input to the Search charm. However, if the appis suspending while on the
HubPage, the redirection of input to the Search charm should not be removed. Formore infosee
Enabling userstotype intothe search box. The following code example shows the
OnNavigatedFrom method of the HubPageViewModel class.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx

135

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

public override void OnNavigatedFrom(Dictionary<string, object> viewModelState,
bool suspending)

{
base.OnNavigatedFrom(viewModelState, suspending);
if (!suspending)
{
_searchPaneService.ShowOnKeyboardInput (false);
}
}

The SaveAsync method of the SessionStateService class writes the current session state to disk. The
SaveAsync method calls the GetNavigationState method of each registered Frame objectin orderto
persistthe serialized navigation history (the frame stack). In AdventureWorks Shopperthere isonly

oneregistered frame, and it corresponds tothe rootFrame in the InitializeFrameAsync method in
the MvvmAppBase class.

Note Asa side effect, the GetNavigationState method invokes the OnNavigatedFrom method of
each of the frame's associated page objects. This allows each page to save view state such as the

currentscroll position of its controls.

Some service and repository classes also persist state to survive termination. In orderto do thisthey
use an instance of the SessionStateService class thatimplements the ISessionStateService interface.
The following code example shows how the AccountService class persists the user's credentials.

C#: AdventureWorks.UILogic\Services\AccountService.cs

_sessionStateService.SessionState[UserNameKey] = userName;
_sessionStateService.SessionState[PasswordKey] = password;

The state is persisted to the same file that the view models persist state to through the
[RestorableState] attribute.

Resuming an app

When an app resumes from the Suspended state, it enters the Running state and continuesfrom
where it was when it was suspended. No application datais lost, because it has not been removed
from memory. Most apps don't need to do anythingif they are resumed before they are terminated
by the operating system.

The AdventureWorks Shopper referenceimplementation does not registeran event handler forthe
Resuming event. In the rare case when an app does registeran event handlerforthe Resuming
event, the handleris called when the app resumes fromthe Suspended state.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.getnavigationstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.getnavigationstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.resuming.aspx

136

Activating an app

Activation supportis provided by the Microsoft.Practices.Prism.StoreApps library. If Windows has
terminated asuspended app, the Application base class calls the OnLaunched method when the app
becomes active again. The following diagram shows the interaction of classesin AdventureWorks
Shopperthatrestore the app afterit has beenterminated.

Windows UL Xaml.Apglication SessionStateService FrameNavigationService

T
1
MyvmAppBase : Windows. Storage.StorageFile
1
1
1

|
OnLaunched
RestoreAsync
Read from disk
RestoreSavedMavigation A

The MvvmAppBase class overrides the OnLaunched method of the Windows.Ul.Xaml.Application
base class. When the OnLaunched method runs, its argumentis a LaunchActivatedEventArgs object.
This object contains an ApplicationExecutionState enumeration that tells you the app's previous
execution state. The OnLaunched method calls the InitializeFrameAsync method toinitialize the
app's Frame object. The following code example shows the relevant code fromthe
InitializeFrameAsync method.

OnMNavigatedTo

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
{
await SessionStateService.RestoreSessionStateAsync();
}
OnInitialize(args);
if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
{
// Restore the saved session state and navigate to the last page visited
try
{

SessionStateService.RestoreFrameState();
NavigationService.RestoreSavedNavigation();

}
catch (SessionStateServiceException)
{
// Something went wrong restoring state.
// Assume there is no state and continue
}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

137

The code checksitsargumentto see whetherthe previous state was Terminated. If so, the method
calls the SessionStateService class's RestoreSessionStateAsync method to recoversaved settings.
The RestoreSessionStateAsync method reads the saved state info, and then the Onlnitialize method
is called whichis overriddenin the App class. This method registersinstances and types with the
Unity dependency injection container. Then, if the previous execution state of the app was
Terminated, the saved session state is restored and the app navigates to the last page was that
visited priorto termination. Thisis achieved by calling the RestoreSavedNavigation method of the
FrameNavigationService class thatin turn simply calls the NavigateToCurrentViewModel method,
which gets the session state forthe currentview, and calls the OnNavigatedTo method on the
currentview model.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

private void NavigateToCurrentViewModel(NavigationMode navigationMode,
object parameter)

{
var frameState = _sessionStateService.GetSessionStateForFrame(_frame);
var viewModelKey = "ViewModel-" + _frame.BackStackDepth;

if (navigationMode == NavigationMode .New)
{
// Clear existing state for forward navigation when adding a new
// page/view model to the navigation stack
var nextViewModelKey = viewModelKey;
int nextViewModelIndex = _frame.BackStackDepth;
while (frameState.Remove(nextViewModelKey))

{
nextViewModelIndex++;
nextViewModelKey = "ViewModel-" + nextViewModelIndex;
}
}
var newView = _frame.Content as FrameworkElement;
if (newview == null) return;

var newViewModel = newView.DataContext as INavigationAware;
if (newViewModel != null)
{

Dictionary<string, object> viewModelState;
if (frameState.ContainsKey(viewModelKey))
{

viewModelState = frameState[viewModelKey] as
Dictionary<string, object>;
}

else

{
viewModelState = new Dictionary<string, object>();
}
newViewModel.OnNavigatedTo(parameter, navigationMode, viewModelState);
frameState[viewModelKey] = viewModelState;

138

All of the view model classes in the AdventureWorks Shopper reference implementation derive from
the ViewModel base class, provided by the Microsoft.Practices.Prism.StoreApps library, which
implements the OnNavigatedTo method. This method simply calls the RestoreViewModel method

to restore any view model state from the frame state, as shownin the following code example.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

public virtual void OnNavigatedTo(object navigationParameter,
NavigationMode navigationMode, Dictionary<string, object> viewModelState)

{ if (viewModelState != null)
{
RestoreViewModel(viewModelState, this);
}
}

The RestoreViewModel method iterates through any propertiesinthe viewmodel and restores the
values of any properties that possess the [RestorableState] attribute, from the frame state.

AdventureWorks Shopper can also be activated through the Search contract. For more infosee
Respondingtosearch queries.

Other ways to close the app

Apps don't contain Ul for closing the app, but users can choose to close an app by pressing Alt+F4,
draggingthe app to the bottom of the screen, or selecting the Close context menuforthe app when
it'sinthe sidebar. Whenanapp is closed by any of these methods, it enters the NotRunning state
for approximately 10secondsandthentransitionsto the ClosedByUser state.

Appsshouldn't close themselves programmatically as part of normal execution. When you close an
app programmatically, Windows treats this as an app crash. The app enters the NotRunning state
and remains there until the useractivatesitagain.

The following diagram shows how Windows determines an app's execution state. Windows takes
app crashes and userclose actionsinto account, as well asthe suspend orresume state. In the
diagram, the white rectanglesindicate thatthe appisn'tloadedinto system memory. The blue
rectanglesindicate thatthe appisin memory. The dashed lines are changes that occur without any
modification to the runningapp. The solid lines are actions thatinclude app notification.

139
App install, user login or
operating system reboot

-~
k]

A

§
-

Mot running ’\)
Activate
E

&

App '::ra\sh
s

Activate

Suspend

-

/—\‘ Suspended
Activate | -\ET/ i
,-"'""_'___""“'-.‘ 1
Mot running % Running E
T Terminate
“1_ ‘ /
10 second Activate Activate e
time out / (resume)
i » Closed by user

Terminated

140

Communicating betweenloosely coupled components in
AdventureWorks Shopper (Windows Store business apps using C#,
XAML, and Prism)

Summary

e Use the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely
coupled componentsinyourapp.

e Notifysubscribers by retrieving the pub/sub event from the event aggregatorand callingits
Publish method of the PubSubEvent<TPayload> class.

e Registertoreceive notifications by using one of the Subscribe method overloads available in
the PubSubEvent<TPayload> class.

When developing business apps forthe Windows Store, acommon approach is to separate
functionalityinto loosely coupled components so thatthe appis easily maintainable. Two objects
are loosely coupledif they exchange data but have notype or objectreferencesto each other. The
types of the objects may be defined in separate, unrelated assemblies, with unrelated lifetimes. This
allows the componentsto be independently developed, tested, deployed, and updated. In this
article we examine atechniqueforcommunication between loosely coupled components called
eventaggregation. Eventaggregation can reduce dependencies between assembliesin asolution.
The AdventureWorks Shopper referenceimplementation uses the event aggregator provided by
Prismforthe Windows Runtime.

You will learn

e How eventaggregation enables communication between loosely coupled componentsinan
app.

e How to defineapub/subevent, publishit, and subscribe toiit.

e How to manually unsubscribe froma pub/sub eventwhen using astrong delegate reference.

Applies to

e Windows Runtime for Windows 8
o CH
e Extensible Application Markup Language (XAML)

Making key decisions

Event aggregation allows communication between loosely coupled componentsinan app, removing
the needforcomponentsto have a reference to each other. The following list summarizes the
decisions to make when usingevent aggregationinyourapp:

e Whenshouldluse eventaggregation over Microsoft .NET events?

e How should|subscribe to pub/subevents?

e How can asubscriberupdate the Ul if the eventis published from a background thread?
e Doesthesubscriberneedtohandle everyinstanceof apublished event?

141

e Dol needtounsubscribe fromsubscribed events?

Eventsin .NET implementthe publish-subscribe pattern. The publisherand subscriberlifetimes are
coupled by objectreferences to each other, and the subscribertype must have areference tothe
publishertype.

Event aggregationisa design pattern that enables communication between classes that are
inconvenienttolink by objectand type references. This mechanism allows publishers and
subscribers to communicate without havingareference to each other. Therefore, .NET events
should be used forcommunication between components that already have object reference
relationships (such as a control and the page that containsit), with event aggregation being used for
communication between loosely coupled components (such as two separate page view modelsinan
app). For more infosee Eventaggregation.

There are several ways to subscribe to events when using event aggregation. The simplestis to
registeradelegate reference of the event handler method that will be called on the publisher's
thread. For more info see Subscribing to events.

If you needto be able toupdate Ul elements when an eventisreceived, you can subscribe to receive
the eventonthe Ul thread.

When subscribingto a pub/sub event, you can request that notification of the event willoccurin the
Ul thread. This is useful, forexample, when you need to update the Ulin response to the event. For
more infosee Subscribing on the Ul thread.

Subscribers do not need to handle everyinstance of a published event, as they can specify a
delegate thatis executed when the eventis published to determineif the payload of the published
event matches aset of criteriarequired to have the subscriber callback invoked. For more info see
Subscriptionfiltering.

By default, event aggregation maintains aweak delegate reference to a subscriber's handler. This
means that the reference will not prevent garbage collection of the subscriber, and itrelieves the
subscriber from the need to unsubscribe. If you have observed performance problems with events,
you can use strongly referenced delegates when subscribing to an event, and then unsubscribe from
the eventwhenit'snolongerrequired. For more info see Subscribing using strong references.

Event aggregation in AdventureWorks Shopper

The AdventureWorks Shopperreferenceimplementation uses the
Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely coupled

components. Thisis a Portable Class Library that contains classes thatimpleme nt event aggregation.
For moreinfosee Prism for the Windows Runtime reference.

The AdventureWorks Shopper referenceimplementation defines the ShoppingCartUpdatedEvent
class and ShoppingCartitemUpdatedEvent class for use with eventaggregation. Youinvoke the
ShoppingCartUpdatedEvent singleton instance's Publish method when the signed in user has

142

changed, to notify the ShoppingCartTabUserControl of the change. The
ShoppingCartTabUserControl isincluded on the HubPage, GroupDetailPage, and ItemDetailPage
views, withthere being notype orobject references between the ShoppingCartTabUserControl and
its parent pages.

The ShoppingCartitemUpdated eventis published whenevera productis added to the shopping
cart, so that the ShoppingCartTabUserControlViewModel class can be updated. For more info see
Eventaggregation.

Pub/subeventsinthe AdventureWorks Shopper reference implementation are published on the Ul
thread, with the subscribers receiving the event on the same thread. Weak reference delegates are
used forboth events, and so the events do not need to be unsubscribed from. For more info see
Subscribing to events.

Note Lambdaexpressionsthat capture the this reference cannotbe used as weak references. You
should use instance methods as the Subscribe method's action and filter parametersif youwantto
take advantage of the PubSubEvent class's weak reference feature.

Event aggregation

.NET events are the most simple and straightforward approach fora communication layer between
componentsifloose couplingis notrequired. Event aggregation should be used for communication
whenit'sinconvenienttolink objects with type and object references.

Note Ifyou use .NETevents, you have to consider memory management, especially if you have a
short lived object that subscribesto an event of a staticor longlived object. If you do not remove
the event handler, the subscriber will be keptalive by the reference toitinthe publisher, and this
will prevent or delay the garbage collection of the subscriber.

The event aggregator provides multicast publish/subscribe functionality. This means that there can
be multiple publishers thatinvoke the Publish method of a given PubSubEvent<TPayload>instance
and there can be multiple subscribers listening to the same PubSubEvent<TPayload>instance. A
subscriber can have more than one subscription to a single PubSubEvent<TPayload>instance. The
following diagram shows this relationship.

Publisher —— F——* Subscribar
g ™y
EventAggregator
* PubSubEvent ~
Publisher ———— q——— Subscribar
PubSubEvent

' - /
Publisher }—’ *——* Subscriber

143

The EventAggregator class is responsible forlocating or building singleton instances of pub/sub
eventclasses. The classimplements the IEventAggregatorinterface,shownin the following code
example.

C#: Microsoft.Practices.Prism.PubSubEvents\IEventAggregator.cs

public interface IEventAggregator

{
TEventType GetEvent<TEventType>() where TEventType : EventBase, new();

}

In the AdventureWorks Shopper reference implementation, aninstance of the EventAggregator
classis createdin the OnLaunched methodinthe App class. Thisinstance isthen passed as an
argument to the constructors of view model classes that need it.

Defining and publishing pub/sub events

In apps such as the AdventureWorks Shopper reference implementation that use event aggregation,
event publishers and subscribers are connected by the PubSubEvent<TPayload> class, whichis the
base classfor an app's specificevents. TPayload is the type of the event's payload. The
PubSubEvent<TPayload> class maintains the list of subscribers and handles event dispatching to the
subscribers. The class contains Subscribe method overloads, and Publish, Unsubscribe, and Contains
methods.

Defining an event

A pub/sub event can be defined by creatingan empty class that derives fromthe
PubSubEvent<TPayload> class. The eventsin the AdventureWorks Shopper reference
implementation do not pass a payload because the event handling only needs to know that the
eventoccurred and then retrieve the updated state related to the eventthrough aservice. Asa
result, they declare the TPayload type as an Object and pass a null reference when publishing. The
following code example shows how the ShoppingCartUpdatedEvent from AdventureWorks Shopper
isdefined.

C#: AdventureWorks.UILogic\Events\ShoppingCartUpdatedEvent.cs

public class ShoppingCartUpdatedEvent : PubSubEvent<object>
{
}

Publishing an event

Publishers notify subscribers of apub/sub event by retrievingasingletoninstance that represents
the eventfrom the EventAggregator class and calling the Publish method of thatinstance. The
EventAggregator class constructs the instance on first access. The following code demonstrates
publishing the ShoppingCartUpdatedEvent.

144

C#: AdventureWorks.UILogic\Repositories\ShoppingCartRepository.cs

private void RaiseShoppingCartUpdated()

{
_eventAggregator.GetEvent<ShoppingCartUpdatedEvent>().Publish(null);

}

Subscribing to events

Subscribers can enlist with an event using one of the Subscribe method overloads available inthe
PubSubEvent<TPayload> class. There are several approaches to event subscription.

Defaultsubscription

In the simplest case, the subscriber must provide ahandlerto be invoked wheneverthe pub/sub
eventis published. Thisis showninthe following code example.

C#: AdventureWorks.UlLogic\ViewModels\ShoppingCartPageViewModel.cs

public ShoppingCartPageViewModel(...)

{
eventAggregator.GetEvent<ShoppingCartUpdatedEvent>()
.Subscribe(UpdateShoppingCartAsync);
}
public async void UpdateShoppingCartAsync(object notUsed)
{
}

In the code, the ShoppingCartPageViewModel class subscribes to the ShoppingCartUpdatedEvent
using the UpdateShoppingCartAsync method as the handler.

Subscribing on the Ul thread

A subscriber will sometimes need to update Ul elementsinresponse to events. In Windows Store
apps, onlythe app's main thread can update Ul elements.

By default, each subscribed handleractionisinvoked synchronously from the Publish method, inno
defined order. If your handler action needs to be called from the Ul thread, for example, inorderto
update Ul elements, you can specify a ThreadOption when you subscribe. Thisis showninthe
following code example.

145

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

public SubscriberViewModel(IEventAggregator eventAggregator)
{

_eventAggregator.GetEvent<ShoppingCartChangedEvent> ()
.Subscribe(HandleShoppingCartUpdate, ThreadOption.UIThread);

The ThreadOption enumeration allows three possible values:

e PublisherThread. This value should be used toreceive the event on the publishers'thread,
and isthe defaultsetting. The invocation of the handleractionis synchronous.

e BackgroundThread. This value should be used to asynchronously receive the eventona
thread-pool thread. The handleractionis queued using a new task.

e UlThread. This value should be used toreceive the eventon the Ul thread. The handler
actionis postedtothe synchronization context that was used to instantiate the event
aggregator.

Note For Ul thread dispatchingtowork, the EventAggregator class must be created onthe Ul
thread. This allows it to capture and store the SynchronizationContext thatis used to dispatch to the
Ul thread forsubscribers that use the ThreadOption.UIThread value.

In addition, itis notrecommended that you modify the payload object from within a callback
delegate becauseseveral threads could be accessing the payload object simultaneously. In this
scenario you should have the payload be immutableto avoid concurrency errors.

Subscription filtering

A subscriber may not need to handle everyinstance of a published event. In this case, the subscriber
can use a Subscribe method overload that accepts a filter parameter. The filter parameteris of type
System.Predicate<TPayload>andis executed whenthe eventis published. If the payload does
satisfy the predicate, the subscriber callbackis not executed. The filter parameteris showninthe
following code example.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

public SubscriberViewModel(IEventAggregator eventAggregator)
{

_eventAggregator.GetEvent<ShoppingCartChangedEvent> ()
.Subscribe(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread, false,
IsCartCountPossiblyTooHigh);

http://msdn.microsoft.com/en-us/library/windows/apps/system.threading.synchronizationcontext.aspx

146

The Subscribe method returns a subscription token of type
Microsoft.Practices.Prism.PubSubEvents.SubscriptionToken that can later be used to remove a
subscription tothe event. Thistokenis usefulif you are usinganonymous delegates as the callback
delegate orwhen you are subscribing to the same event handler with different filters.

Note Thefilteractionisexecuted synchronously from the context of the Publish method regardless
of the ThreadOption value of the current subscription.

Subscribing using strong references

The PubSubEvent<TPayload> class, by default, maintains aweak delegatereference tothe
subscriber's handlerand anyfilter, on subscription. This means that the reference that the
PubSubEvent<TPayload> class holds onto will not prevent garbage collection of the subscriber.
Therefore, usingaweak delegatereferencerelieves the subscriber from the need to unsubscribe
fromthe event, and allows forgarbage collection.

Maintaining aweak delegate reference has a slightly higher performance impact than usinga
corresponding strong delegate reference. If yourapp publishes many eventsinavery short period of
time, you may notice a performance cost when using weak delegatereferences. However, for most
apps the performance willnot be noticeable. In the event of noticing a performance cost, you may
needtosubscribe to events by using strong delegate references instead. If you do use strong
delegate references, your subscriber will need to unsubscribe from events when the subscriptionis
no longerneeded.

To subscribe with astrong delegate reference, use an overload of the Subscribe method that has the
keepSubscriberReferenceAlive parameter, asshownin the following code example.

CH

public SubscriberViewModel(IEventAggregator eventAggregator)
{

bool keepSubscriberReferenceAlive = true;
_eventAggregator.GetEvent<ShoppingCartChangedEvent> ()
.Subscribe(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread,
keepSubscriberReferenceAlive);

The keepSubscriberReferenceAlive parameteris of type bool. When set to true, the eventinstance
keepsastrong reference to the subscriberinstance, thereby not allowingit to be garbage collected.
Forinfoabout how to unsubscribe see "Unsubscribing from pub/sub events" in the following
section. When setto false, whichisthe default value when the parameteris omitted, the event
maintains aweak reference tothe subscriberinstance, thereby allowing the garbage collectorto
dispose the subscriberinstance whenthereare no otherreferencestoit. Whenthe subscriber
instance is garbage collected, the eventis automatically unsubscribed.

147

Unsubscribing from pub/sub events

If your subscriber nolongerwantto receive events, you can unsubscribe by using your subscri ber's
handlerorby usinga subscription token. The following code example shows how to unsubscribe by
using yoursubscriber's handler.

CH#

ShoppingCartChangedEvent shoppingCartChangedEvent =
_eventAggregator.GetEvent<ShoppingCartChangedEvent>();

shoppingCartChangedEvent. Subscribe (HandleShoppingCartUpdate,
ThreadOption.PublisherThread);

shoppingCartChangedEvent.Unsubscribe(HandleShoppingCartUpdate);

The following code example shows how to unsubscribe by using asubscription token. The tokenis
suppliedasareturn value fromthe Subscribe method.

CH#

ShoppingCartChangedEvent shoppingCartChangedEvent =
_eventAggregator.GetEvent<ShoppingCartChangedEvent>();

subscriptionToken = shoppingCartChangedEvent.Subscribe(HandleShoppingCartUpdate,
ThreadOption.UIThread, false, IsCartCountPossiblyTooHigh);

shoppingCartChangedEvent.Unsubscribe(subscriptionToken);

148

Working with tiles in AdventureWorks Shopper (Windows Store
business apps using C#,XAML, and Prism)

Summary

e Use livetilestopresentengaging new contentto usersthatinvitesthemtolaunchthe app.
e Use secondarytilesand deep links to promote specificcontentin yourapp.
e Use periodicnotifications to update tiles on afixed schedule.

Tilesrepresentyourapp onthe Start screen and are used to launch your app. They have the ability
to display acontinuously changing set of content that can be used to keep users aware of events
associated with yourapp whenit's not running. Whenyou use tiles effectively you can give your
users a great first-impression of your Windows Store app. This article discusses how to create an app
tile thatis updated by periodic notifications, and how to create secondary tilesand deep links to
promote specificcontentfromthe app onto the Start screen.

You will learn

e How to create and update an app tile with periodic notifications.
¢ How to pinand unpinsecondarytilestothe Start screen from within an app.
e How tolaunchthe app to a specific page froma secondarytile.

Applies to

¢ Windows Runtime for Windows 8
e CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

Atileisan app'srepresentation onthe Startscreen and allows you to present rich and engaging
contentto your users whenthe app is not running. Tiles should be appealing to usersin orderto give
them great first-impression of your Windows Store app. The following list summarizes the decisions
to make when creatingtiles foryour app:

e Whyshouldlinvestina livetile?

e How dol make a live tile compellingto users?

e What shape should mytile be?

e What ssize should mytileimage be?

e Whichtiletemplatesshouldluse?

e What mechanismshould | use todelivertile notifications?

e How oftenshould mylive tilecontentchange?

e Shouldmyapp include the ability to pin secondary tiles to Start?

Tiles can be live, meaning they are updated through notifications, or static. Forinfoabouttiles,
includingwhy youshouldinvestinalive tile, how to make alive tile compelling to users, what shape

149

and size a tile should be, which tiletemplates you should use, how often your live tile content should
change, and secondarytiles, see Guidelines and checklistfor tiles and badges, Tileand toastimage
sizes, The tile template catalog, Sending notifications, and Secondary tiles overview.

The choice of which mechanismto use todeliveratile notification depends on the content you want
to show and how frequently that content should be updated. Local notifications are a good way to
keepthe apptile current, evenif youalso use othernotification mechanisms. Many apps will use
local notifications to update the tile when the app is launched or when state changes within the app.
This ensuresthatthe tile is up-to-date when the app launches and exits. Scheduled notifications are
ideal forsituations where the content to be updatedis knowninadvance, such as a meeting
invitation. Periodic notifications provide tile updates with minimal web or cloud service and client
investment, and are an excellent method of distributing the same contentto awide audience. Push
notifications are idealforsituations where yourapp has real-time data or data that is personalized
for your user. Push notifications are also usefulin situations where the datais time -sensitive, and
where the contentis generated at unpredictable times. Periodic notifications offer the most suitable
notification solution forside-loaded apps, but don't provide notifications on demand. In addition,
with periodic notifications, afterthe initial pollto the web or cloud service Windows willcontinueto
pollfortile updates evenifyourappisneverlaunchedagain. Formore infosee Choosinga
notification delivery method.

Note Push notifications use the Windows Push Notification Services (WNS) to deliver updates to
users. Before you can send notifications using WNS, your app must be registered with the Windows
Store Dashboard. For more info see Push notification overview.

Tiles in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation includes square and wide default tiles,
which were created accordingto the pixel requirements foreach. Choosingasmall logo that
representsyourappisimportantsothat users can identify it whenthe tile displays custom content.
For more infosee Creatingapp tiles.

The defaulttiles are made live by updating them with periodic notifications, at 30 minute intervals,
to advertise specific products to users on their Start screen. The periodic notifications use peek
templatessothatthe live tile willanimate between two frames. The first frame shows an image of
the advertised product, with the second frame showing product details. Both wide and square peek
tile templates are used. While AdventureWorks Shopper will default to the wide tile, itcan be
changedto the square tile by the user. For more info see Using periodic notifications to update tile

content.

AdventureWorks Shopperincludes the ability to create secondary tiles by pinning specific products
to the Start screen from the ItemDetailPage. The following diagram shows the two frames of a
secondarytile created from one of the products soldin AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465403.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781198.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781198.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779722.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465372.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779721.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779721.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx

150

Men's Bib-Shorts, S

Selectingasecondarytile launches the app and displays the previously pinned product on the
ItemDetailPage. For more info see Creating secondary tiles.

Creating app tiles

Tilesbeginasa defaulttile definedinthe app's manifest. A statictile will always display the default
content, whichisgenerally afull-tile logoimage. Alive tile can update the default tile to show new
content, but can return to the defaultif the notification expires oris removed. The following
diagrams shows the default small, square, and widelogo images that can be found inthe Assets
folderinthe AdventureWorks Shopper Visual Studio solution. Each logo has a transparent
background. Thisis particularly importantforthe small logo sothat it will blendin with tile
notification content.

30 x 30 pixels

150 x 150 pixels

310 x 150 pixels

Note Image assets, includingthe logos, are placeholders and meant fortraining purposes only. They
cannot be used as a trademark or for other commercial purposes.

151

The Visual Studio manifest editor makes the process of adding the default tiles easy. For more info
see Quickstart: Creating adefaulttile using the Visual Studio manifest editor. For more info about
working with image resources, see Quickstart: Using file orimage resources and How to name

resources using qualifiers.

If onlya square logois providedin the app's manifestfile, the app'stile willalways be square. If both
asquare and a wide logo are provided in the manifest, the app's tile will default to awide tile when
itisinstalled. You must decide whetheryou wantto allow a wide tile as well. This choice is made by
providingawide logoimage when you define yourdefaulttile inyourapp manifest.

Using periodicnotifications to update tile content

Periodicnotifications, which are sometimes called polled notifications, update tiles at a fixed interval
by downloading content directly fromaweb or cloud service. To use periodic notifications your app
must specify the Uniform Resource Identifier (URI) of aweb location that Windows polls fortile
updates, and how often that URI should be polled.

Periodicnotifications requirethat yourapp hosts a web or cloud service. Any valid HTTP or Secure
Hypertext Transfer Protocol (HTTPS) web address can be used as the URI to be polled by Windows.
The following code example shows the GetTileNotification method in the TileNotificationController
classin the AdventureWorks.WebServices project, whichis used tosendtile contenttothe
AdventureWorks Shopperreference implementation.

C#: AdventureWorks.WebServices\Controllers\TileNotificationController.cs

public HttpResponseMessage GetTileNotification ()

{
var tilexml =
GetDefaultTileXml("http://localhost:2112/Images/hotrodbike_red_large.jpg",
"Mountain-400-W Red, 42");
tileXml = string.Format(CultureInfo.InvariantCulture, tilexml,
DateTime.Now.ToShortDateString(), DateTime.Now.ToShortTimeString());
// create HTTP response
var response = new HttpResponseMessage();
// format response
response.StatusCode = System.Net.HttpStatusCode.OK;
response.Content = new StringContent(tileXml);
// Need to return xml format to TileUpdater.StartPeriodicUpdate
response.Content.Headers.ContentType =
new System.Net.Http.Headers.MediaTypeHeaderValue("text/xml");
return response;
}

This method generates the XMLtile content, formatsit, andreturnsit as a HTTP response. The tile
content must conformto the Tile schemaand be 8-bit Unicode Transformation Format (UTF-8)

http://msdn.microsoft.com/en-us/library/windows/apps/hh868247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965325.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br212859.aspx

152

encoded. The tile contentis specified using the TileWidePeeklmage01and
TileSquarePeekimageAndText02 templates. Thisis necessary because whilethe app will use the
wide tile by default, it can be changed to the square tile by the user. For more infosee Thettile
template catalog.

At a pollinginterval of 30 minutes, Windows sends an HTTP GET request to the URI, downloads the
requested tilecontentas XML, and displays the content onthe app's tile. Thisisaccomplishe d by the
Onlnitialize method in the App class, as showninthe following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

_tileUpdater = TileUpdateManager.CreateTileUpdaterForApplication();
_tileUpdater.StartPeriodicUpdate(new Uri(Constants.ServerAddress +
"/api/TileNotification"), PeriodicUpdateRecurrence.HalfHour);

A new TileUpdaterinstance is created by the CreateTileUpdaterForApplication method inthe
TileUpdateManager class, in orderto update the app tile. By default, atile on the Start screen shows

the content of a single notification until itis replaced by anew notification. However, you can enable
notification cycling so that up to five notifications are maintained ina queue and the tile cycles
through them. Thisisaccomplished by calling the EnableNotificationQueue method with a

parameter of true, on the TileUpdaterinstance. Finally, a call to StartPeriodicUpdate is made to poll
the specified URlin orderto update the tile with the received content. After thisinitial poll,
Windows will continue to provide updates every 30 minutes, as specified. Polling then continues
until you explicitly stopit, oryourapp is uninstalled. Otherwise Windows will continueto poll for
updatestoyourtile evenifyourappisneverlaunched again.

Note While Windows makes abest effortto poll asrequested, the interval is not precise. The
requested pollintervalcan be delayed by up to 15 minutes.

By default, periodictile notifications expire three days from the time they are downloaded.
Therefore, itisrecommended thatyou setan expiration on all periodictile notifications, usingatime
that makes sense foryourapp, to ensure thatyour tile's content does not persist longerthanit's
relevant. Thisalso ensures the removal of stale contentif your web or cloud service becomes
unreachable, orif the userdisconnects fromthe network foran extended period of time. Thisis
accomplished by returning the X-WNS-Expires HTTP header to specify the expiration date and time.

For more info see Periodicnotification overview, Using the notification queue, and Guidelines and

checklistfor periodicnotifications.

Creating secondary tiles

A secondarytile allows ausertolaunchto a specificlocationin an app directly from the Startscreen.
Apps cannot pinsecondary tiles programmatically without userapproval. Users also have explicit
control oversecondary tile removal. This allows users to personalize their Start screen with the
experiencesthatthey use the most.

http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforapplication.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.enablenotificationqueue.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.startperiodicupdate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj150587.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781199.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx

153

Secondary tiles are independent of the main app tile and can receive tile notifications
independently. When asecondarytile is activated, an activation contextis presented to the parent
app so thatit can launchin the context of the secondary tile.

The optionto create a secondary tile isseen onthe bottom app bar of the ItemDetailPage as the Pin
to Start app bar button. This enablesyouto create a secondary tile forthe product being displayed.
Selectingthe secondary tilelaunches the app and displays the previously pinned product on the
ItemDetailPage. The following diagram shows an example of the Flyout thatis displayed whenyou
select the Pinto Start button. The Flyout shows a preview of the secondary tile, and asks you to
confirmits creation.

ADVENTURE
WORKS

Road-750 Black, 52

Pinningand unpinning secondary tilefunctionality is provided by the SecondaryTileService class,
which implementsthe ISecondaryTileServiceinterface. Inthe Onlnitialize method in the App class,
the SecondaryTileService classis registered as a type mapping against the ISecondaryTileService
type with the Unity dependencyinjection container. Then, when the ItemDetailPageViewModel
classis instantiated, which accepts an ISecondaryTileService type, the Unity container willresolve
the type and return an instance of the SecondaryTileService class.

154

The workflow AdventureWorks Shopper uses to pina secondary tile to Start is as follows:

1. Youinvoke the PinProductCommand through the Pinto Start app bar button on the
ItemDetailPage.

C#: AdventureWorks.UILogic\ViewModels\IltemDetailPageViewModel.cs

PinProductCommand = DelegateCommand.FromAsyncHandler (PinProduct,
() => SelectedProduct != null);

2. AdventureWorks Shoppercheckstoensure thatthetile hasn'talready been pinned by
calling the SecondaryTileExists predicatein the SecondaryTileServiceinstance.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

bool isPinned = _secondaryTileService.SecondaryTileExists(tileld);

3. AdventureWorks Shopper calls the PinWideSecondaryTile method in the
SecondaryTileService instance to create asecondarytile. The
SelectedProduct.ProductNumber propertyis usedasa unique ID.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

isPinned = await _secondaryTileService.PinWideSecondaryTile(tileId,
SelectedProduct.Title, SelectedProduct.Description,
SelectedProduct.ProductNumber) ;

The PinWideSecondaryTile method creates anew instance of the SecondaryTile class,
providinginformation such as the short name, the display name, the logo, and more.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

var secondaryTile = new SecondaryTile(tileId, shortName, displayName,
arguments, TileOptions.ShowNameOnWidelLogo, _squareLogoUri,
_widelLogoUri);

4. The RequestCreateAsync methodis called onthe SecondaryTile instance to display aFlyout
that shows a preview of the tile, asking you to confirmiits creation.

C#: AdventureWorks.UlILogic\Services\SecondaryTileService.cs

bool isPinned = await secondaryTile.RequestCreateAsync();

5. You confirmandthe secondarytile is added tothe Start screen.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx

155

The workflow AdventureWorks Shopper usesto unpin asecondary tile from Start is as follows:

1. AdventureWorks Shopperinvokes the UnpinProductCommand through the Unpin from
Start app bar button on the ItemDetailPage.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

UnpinProductCommand = DelegateCommand.FromAsyncHandler(UnpinProduct,
() => SelectedProduct != null);

2. AdventureWorks Shoppercheckstoensure thatthe tile hasn'talready been unpinned by
calling the SecondaryTileExists predicatein the SecondaryTileServiceinstance.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

bool isPinned = _secondaryTileService.SecondaryTileExists(tileld);

3. AdventureWorks Shopper calls the UnpinTile method on the SecondaryTileService instance
to remove the secondarytile. The tile can be identified by the
SelectedProduct.ProductNumber property as the unique ID.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

isPinned = (await _secondaryTileService.UnpinTile(tileId)) == false;

The UnpinTile method creates a new instance of the SecondaryTile class, using the
SelectedProduct.ProductNumber property as the unique ID. By providingan ID foran
existing secondary tile, the existing secondary tile willbe overwritten.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

var secondaryTile = new SecondaryTile(tilelId);

4. The RequestDeleteAsync methodis called onthe SecondaryTile instance to display a Flyout
that shows a preview of the tile to be removed asking you to confirmits removal.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

bool isUnpinned = await secondaryTile.RequestDeleteAsync();

5. You confirmandthe secondarytile isremoved from the Startscreen.

Note Secondarytilescanalsobe removedthroughthe Startscreenapp bar. When this occurs the
app is not contacted for removal information, the useris notasked fora confirmation, and the app s
not notified thatthe tileisnolonger present. Any additional cleanup action that the app would have
takeninunpinningthe tile mustbe performed by the app at its nextlaunch.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx

156

For more infosee Secondary tiles overview and Guidelines and checklist for secondary tiles.

Launching the app froma secondary tile

Wheneverthe appislaunched the OnLaunched methodinthe MvvmAppBase class is called (the
MvvmAppBase class is provided by the Microsoft.Practices.Prism.StoreApps library). The
LaunchActivatedEventArgs parameterin the OnLaunched method will contain the previous state of
the app and the activation arguments. If the appislaunched by its primary tile, the Tileld property of
the LaunchActivatedEventArgs parameter will have the same value as the application|din the
package manifest. If the appislaunched by a secondarytile, the Tileld property will have an ID that
was specified when the secondary tile was created. The OnLaunched method inthe MvvmAppBase
class will call the OnLaunchApplication method in the App class onlyif the app is notresuming
following suspension, orif the app was launched through asecondary tile. The OnLaunchApplication
method, whichisshowninthe following code example, provides app specificlaunch behavior.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override void OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{
// The app was launched from a Secondary Tile
// Navigate to the item's page
NavigationService.Navigate("ItemDetail"”, args.Arguments);
}
else
{
// Navigate to the initial page
NavigationService.Navigate("Hub", null);
}

In this method the LaunchActivatedEventArgs parameter containsthe previous state of the app and
the activationarguments. If the appis being launched fromthe app tile then the activation
Arguments property will not contain any data and so the HubPage will be navigated to. If the app is
beinglaunched fromasecondarytile thenthe activation Arguments property will containthe
product number of the product to be displayed. The ItemDetailPage will then be navigated to, with
the product number being passed to the OnNavigatedTo override in the ItemDetailPageViewModel
instance, sothat the specified productis displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465372.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.tileid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.arguments.aspx

157

Implementing search in AdventureWorks Shopper (Windows Store
business apps using C#,XAML, and Prism)

Summary

e Respondto OnQuerySubmitted and OnSearchApplication notifications.
e Implementtype tosearchforyourapp's hub, browse, and search pages.

e Savethesearch results page forthe last queryin case the app is activated to search for that
qguery again.

To add search to your app you must participate inthe Search contract. When you add the Search
contract, users can search your app fromanywhere intheir system by selecting the Search charm.
The AdventureWorks Shopperreferenceimplementation uses the SearchPaneService class,
provided by Prism forthe Windows Runtime, to represent and manage the search pane that opens
whena useractivates the Search charm in an app that uses the Model-View-ViewModel (MVVM)

pattern.

You will learn

e How to use the Search contract to implement search functionality through the Search
charm.

e How torespondtoa search query while the appisthe mainapp onscreen.

e How torespondtoasearch querywhenthe appisnotthe main appon screen.

Applies to

e Windows Runtime for Windows 8
e CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

When you add search with the Search contract, users can search yourapp's content from anywhere
intheirsystem, through the Search charm. The following list summarizes the decisions to make
whenimplementing searchinyourapp:

e How shouldlinclude search functionalityinmyapp?
e Shouldladd asearchiconto the app canvas?

e Shouldladd a search box to the app canvas?

e What should I display on my search results page?

You shouldrely onthe Search charm to let users search for contentin yourapp, customizing it
where necessary, inorderto ensure that users have a consistent and predictable experiencewhen
they search and when they change search settings.

158

Regardless of where yourapp's contentislocated, you can use the Search charm torespondto
user's queries and display search resultsinan app page of your own design. When a userselects the
Search charm, a search pane opens with a search box where they can entera query and a list of
searchable appsisdisplayed. If yourappis the mainapp onscreen, itis automatically highlightedin
the listof apps inthe search pane. Otherwise, users can select the Search charm and then select
your app from the list of apps in the search pane.

If users need search to get started using yourapp, add a search iconto your app canvas. A
prominentsearchicongivesusersastrongvisual cue that tellsthem where to begin. When users
selecttheicon, yourapp should open the Search charm programmatically so that users can enter
theirquery usingthe search pane. Using the Search charm in this way helps make yourapp more
intuitive and helps keep yourapp's search experience consistent with searchin Windows 8and
otherapps.

Note Snappedviewsdonotneedtohave a searchicon onthe app canvas because searching
automatically unsnapsthe app.

If search isthe primary purpose of yourapp and you wantto show extensive suggestions, add a
search box to yourapp canvas. A prominentsearch box helpsindicate to users thatyourapp
specializesin search. When users enteraquery, you can use yourown custom layouts to display a
greater number of more detailed suggestions on your app canvas. However, if you provide anin-app
search box, the user might have two different search histories foryour app —one history tied to the
in-app search box, and anothertied to the Search charm.

When users submita search query to your app, they see a page that shows search results forthe
qguery.Youdesign the searchresults page foryour app, and so must ensure that the presented
results are useful and have an appropriate layout. You should use a ListView or GridView control to
display searchresults, and let users see their query text on the page. Also, you shouldindicate why a

search result matches the query by highlighting the user's queryin each result, whichis known as hit
highlighting. In addition, you should let users navigate back to the last-viewed page aftertheylook at
the details fora search result. This can be accomplished by including aback buttoninthe app's UL.
This back button should be usedto go to the page that the user was interacting with before they
submitted theirsearch. However, if your app was activated through the Search contract, it wil | not
have a page to navigate back to. In this scenario you must ensure that yourapp providesa
mechanismto exit the search results page, such as a top app bar button that performs navigation.

For more info see Guidelines and checklist forsearch.

Search in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation uses the Search charmto respondto user's
queriesanddisplay searchresultsinanapp page. When a user selects the Search charm, a search
pane opens with a search box where they can entera query. Search results are displayed using a
GridView control, unless the appis snapped when a ListView control is used instead. The search
results page includesthe user's query text, hit highlighting to indicate why a search result matches

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx

159

the query, and lets users navigate back to the last-viewed page. For more info see Participatingin
the Search contract.

AdventureWorks Shopperincludes asearchicon on the app canvas forthe HubPage,
GroupDetailPage, and ItemDetailPage, as long as the app is not snapped. The searchiconis
prominently located nexttothe shoppingcarticon, as showninthe following diagram. For more info
see Participatinginthe Search contract.

L0

Note
AdventureWorks Shopper does not provide the following search functionality:

e Queryand resultsuggestions onthe Search charm.
e Filtersandscope to refine the searchresults.

You should provide this functionality in your own apps to ensure that they are fully integrated with
the Search contract. Formore info see Guidelines and checklist forsearch.

Participating in the Search contract

Windows Store apps use contracts and extensions to declare the interactions that they support with
otherapps. Apps must include required declarations in the package manifestand call required
Windows Runtime APls to communicate with Windows and other contract participants. A contract
definesthe requirementsthatapps must meetto participate in Windows interactions. Whenyou
participate in the Search contract, you agree to make your app's contract searchable by other
participants and to presentsearch results fromthose participantsinyourapp. The advantage this
offersisthatit can help youto gain trafficand usage for yourapp.

To participate inthe Search contract you should add the Search Contract template itemtoyour
project, fromthe center pane of the Add a New Item dialog. Visual Studio then customizes your
project to fulfillthe minimum requirements of the Search contract. This customizationis required to
ensure thatyour appis fullyintegrated with the Search charm, so that your users will have a positive
experience whenthey search yourapp. The search contract allows usersto invoke an application for
search from anywhere inthe system by using the Search charm. The AdventureWorks Shopper
reference implementation willalways respond to a search activation event by savingits state, thus
allowinguserstoreturn tothat previous state ata latertime.

Note To checkwhich contracts and extensions yourapp supports openthe package manifestand
select the Declarations tab.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx

160

The SearchPane class represents and manages the search pane that openswhen a useractivatesthe
Search charm. AdventureWorks Shopper uses the SearchPaneService class, whichis provided by the
Microsoft.Practices.Prism.Store Apps library, as an abstraction of the SearchPane class. This is

necessaryinorderto make the app testable, as the SearchPane classis a view dependency and
should not be referenced directly from view model classes. Inthe Onlinitialize methodinthe App
class, the SearchPaneService classis registered as a type mapping against the ISearchPaneService
type with the Unity dependency injection container. When any classes with adependency onthe
ISearchPaneService type are instantiated, the Unity container will resolve the type and return an
instance of the SearchPaneService class.

Placeholdertextisshowninthe search boxinthe search pane, to describe what users can search for
in AdventureWorks Shopper. The textis only shown when the search box isempty, andis cleared if
the user starts typinginto the box. Thisis accomplishe d by setting the PlaceholderText property of

the SearchPane class.

The SearchQueryArguments class, which is provided by the Microsoft.Practices.Prism.Store Apps
library, is an abstraction of the SearchPaneQuerySubmittedEventArgs and the
SearchActivatedEventArgs classes. Thisisrequiredin orderto have only one event handlerthat

handles both of the search activation events. It has the added benefit of enabling testability, asth e
SearchPaneQuerySubmittedEventArgs and SearchActivatedEventArgs classes are view
dependencies and should not be referenced directly from view model classes. Formore info see
Respondingto search queries.

The SearchUserControl class defines asearchiconthat's added to the app canvas onthe HubPage,
GroupDetailPage, and ItemDetailPage. When users select the searchicon the Search charmis
opened programmatically by the ShowSearchPane method in the SearchUserControlViewModel
class, so that users can entertheirquery usingthe search pane.

The SearchResultsPage includes a back buttonand a top app bar that allows users to navigate to the
HubPage and the ShoppingCartPage. If AdventureWorks Shopperis suspended while the
SearchResultsPage is active, the app will correctly restore page state upon reactivation by using the
Microsoft.Practices.Prism.StoreApps library. Thisincludes the GridView scroll position, the user's
guery text, and the search results. This avoids the need to requery the data using the query text.

For more info see Quickstart: Adding search toan app.

Responding to search queries

When the user searches AdventureWorks Shopperwhenitisthe mainapp onscreen, the system
fires the QuerySubmitted eventand stores the arguments forthis eventwith aninstance of the
SearchPaneQuerySubmittedEventArgs class. The OnQuerySubmitted method in the MvvmAppBase

class handles this event, andis showninthe following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.placeholdertext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpanequerysubmittedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.searchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868180.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.querysubmitted.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpanequerysubmittedeventargs.aspx

161

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private void OnQuerySubmitted(SearchPane sender, SearchPaneQuerySubmittedEventArgs
args)

{

var searchQueryArguments = new SearchQueryArguments(args);
OnSearchApplication(searchQueryArguments);

This method responds to the QuerySubmitted event by displaying the search results page forthe
user's query. It does this by callingthe OnSearchApplication method overrideinthe App class,
whichisshowninthe following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override void OnSearchApplication(SearchQueryArguments args)

{
if (args != null && !string.IsNullOrEmpty(args.QueryText))

{
NavigationService.Navigate("SearchResults", args.QueryText);
}
else
{
NavigationService.Navigate("Hub", null);
}

Users may selectyourapp fromthe Search charm without entering query text. They may dothisto
scope theirsearch to your app, or simplyas a quick way to get back to what they were last looking
at. Your app should anticipate the user's needs and respond differently in each case. This can be
accomplished by checking the QueryText property of the SearchQueryArguments classin the
OnSearchApplication method. Here, the SearchResultsPage will be navigated to provided that the
QueryText property contains data. Otherwise the HubPage will be navigated to.

When the user searches AdventureWorks Shopperwhenitis notthe mainapp on screen, the system
firesthe Activated eventand stores the arguments for this event with aninstance of the
SearchActivatedEventArgs class. This OnSearchActivated method in the MvvmAppBase class

handlesthisevent, andisshowninthe following code example.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

protected async override void OnSearchActivated(SearchActivatedEventArgs args)

{

// If the Window isn't already using Frame navigation, insert our own Frame
var rootFrame = await InitializeFrameAsync(args);

if (rootFrame != null)

{

var searchQueryArguments = new SearchQueryArguments(args);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.querysubmitted.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.core.corewindow.activated.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.searchactivatedeventargs.aspx

162

OnSearchApplication(searchQueryArguments);

// Ensure the current window is active
Window.Current.Activate();

This method respondstothe Activated event by displaying the search results page forthe user's
guery. It does this by callingthe OnSearchApplication method override in the App class.

Note The OnSearchApplication methodinthe MvvmAppBase class is virtual. This means that if
your app does not implement the Search contract, this method does not need to be overridden

For more info about activating an app see App contracts and extensions and How to activate an app.

Populating the searchresults page with data

When users search AdventureWorks Shopperthe SearchResultsPage is used to display search
results. The OnNavigatedTo method in the SearchResultsPageViewModel class is used to populate
the page withthe searchresults, as shownin the following code example.

C#: AdventureWorks.UILogic\ViewModels\SearchResultsPageViewModel.cs

public async override void OnNavigatedTo(object navigationParameter,
NavigationMode navigationMode, Dictionary<string, object> viewModelState)

base.OnNavigatedTo(navigationParameter, navigationMode, viewModelState);
var queryText = navigationParameter as String;

string errorMessage = string.Empty;

this.SearchTerm = queryText;

this.QueryText = '\u20lc' + queryText + '\u201d';

try
{
ReadOnlyCollection<Product> products;
if (queryText == PreviousSearchTerm)
{
products = PreviousResults;
}
else
{
var searchResults = await _productCatalogRepository
.GetFilteredProductsAsync(queryText);
products = searchResults.Products;
TotalCount = searchResults.TotalCount;
PreviousResults = products;
}

var productViewModels = new List<ProductViewModel>();
foreach (var product in products)

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.core.corewindow.activated.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464906.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465093.aspx

163

productViewModels.Add(new ProductViewModel(product));
}

// Communicate results through the view model
this.Results =

new ReadOnlyCollection<ProductViewModel> (productViewModels);
this.NoResults = !this.Results.Any();

// Update VM status
PreviousSearchTerm = SearchTerm;
_searchPaneService.ShowOnKeyboardInput (true);

}
catch (HttpRequestException ex)
{
errorMessage = string.Format(CultureInfo.CurrentCulture,
_resourcelLoader.GetString("GeneralServiceErrorMessage"),
Environment.NewLine, ex.Message);
}
if (!string.IsNullOrWhiteSpace(errorMessage))
{
await _alertMessageService.ShowAsync(errorMessage,
_resourcelLoader.GetString ("ErrorServiceUnreachable"));
}

This method uses the ProductCatalogRepository instance to retrieve products fromthe web service
if they match the queryText parameter, and store them in the Results property fordisplay by the
SearchResultsPage. If noresults are returned by the ProductCatalogRepository, the NoResults
propertyissetto true and the SearchResultsPage displays a message indicating that no products
match yoursearch. The method also savesthe search results forthe last queryin case
AdventureWorks Shopperis activated to search for that query again. This handles the scenario
whereby the user might submitasearch query to AdventureWorks Shopperand then switch to
anotherapp, searchingit using the same query, and then come back to AdventureWorks Shopperto
view the search results again. When this happens, AdventureWorks Shopperis activated for search
again. If the current queryisthe same as the last query, it avoids retrieving a new set of search
results, instead loading the previous search results.

For more infosee Guidelines and checklistforsearch.

Navigating to the result's detail page

To display detailed information about auserselected result the ListViewltemClickedToAction
attached behavior binds the ItemClick event of the GridView in the SearchResultsPage to the
ProductNavigationAction property inthe SearchResultsPageViewModel class. Sowhen a
GridViewltem s selected the ProductNavigationAction is executed and calls the NavigateToltem
method inthe SearchResultsPageViewModel class, whichis showninthe following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

164

C#: AdventureWorks.UlLogic\ViewModels\SearchResultsPageViewModel.cs

private void NavigateToItem(object parameter)

{
var product = parameter as ProductViewModel;
if (product != null)
{
_navigationService.Navigate("ItemDetail"”, product.ProductNumber);
}
}

This method navigates to the ItemDetailPage, with the product ID being passed tothe
OnNavigatedTo override in the ItemDetailPageViewModel instance, so that the specified productis
displayed.

For more info about usingan attached behaviorto enable aneventtobe handledina view model,
rather thanin a page's code-behind, see Usingthe MVV M pattern.

Enabling users to type into the search box

When the user selectsthe searchicon on the app canvas, the Search charm displays asearch pane
with a search box where they can entera query. The AdventureWorks Shopper reference
implementation also provides the ability to search for contentin the app by typingdirectlyintothe
search box of the Search charm, without selecting the Search charmfirst. This feature is known as
typeto search. Enablingtype to search makes efficient use of keyboard interaction and makesthe
app's search experience consistent with the Start screen.

Type to search isenabledin AdventureWorks Shopperforthe HubPage, GroupDetailPage,
ItemDetailPage, and SearchResultsPage. When aview model's OnNavigatedTo method is executed
the ShowOnKeyboardinput property in the SearchPaneService instance is setto true so that the
search box receivesinput when userstype. Inturn, this sets the ShowOnKeyboardinput propertyin
the SearchPane class to true.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

_searchPaneService.ShowOnKeyboardInput(true);

Then, whena view model's OnNavigatedFrom method is executed, provided thatthe appisn't
suspending, the ShowOnKeyboardInput property in the SearchPaneService instance is set to false
so that the search box will not receive input when users type. Inturn, this sets the
ShowOnKeyboardInput property in the SearchPane class to false. The following code example
shows the OnNavigatedFrom method.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.showonkeyboardinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.showonkeyboardinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.aspx

165

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

public override void OnNavigatedFrom(Dictionary<string, object> viewModelState,
bool suspending)

{
base.OnNavigatedFrom(viewModelState, suspending);
if (!suspending)
{
_searchPaneService.ShowOnKeyboardInput (false);
}
}

If the app is suspending, the OnNavigatedFrom method should not set the ShownOnKeyboardinput
property to false. Thisis because when the app suspends, the OnNavigatedFrom method is called. If
the app resumeswithout being terminated, the corresponding OnNavigatedTo methodis not called.
Therefore, all OnNavigatedFrom methods feature a suspending parameterthat tells the view model
whetheritis being suspended. If the parameteris true it means that no change should be made to
state that wouldinvalidatethe page and that a subsequent OnNavigatedTo method might notbe
called.

In addition, the AdventureWorks Shopper disables type to search before showinga Flyout, and
restoresitwhen the Flyoutcloses. Thisis accomplished inthe Open and OnPopupClosed methodsin

the FlyoutView class, respectively.

For more infosee Guidelines and checklistforsearch.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx

166

Improving performance in AdventureWorks Shopper (Windows Store
business apps using C#,XAML, and Prism)

Summary

e Planfor performance and measure it early and throughoutthe lifecycle of your project.

e Use asynchronous APls that execute in the background and inform the app when they've
completed.

e Use performance tools to measure, evaluate, and target performance -related issues in your
app.

Users of Windows Store apps expect theirappstoremainresponsive and feel natural when they use
them. Inthis article we discuss general performance best practices forthe AdventureWorks Shopper
reference implementation.

You will learn

e Thedifferences between performance and perceived performance.
e Guidelinesthathelptocreate a well-performing, responsive app.
e Recommended strategies for profilingan app.

Applies to

e Windows Runtime for Windows 8
e CH
e Extensible Application Markup Language (XAML)

Making key decisions

Users have a number of expectations forapps. They wantimmediate responses to touch, clicks, and
key presses. They expect animations to be smooth. They expectthatthey'll never have to wait for
the app to catch up with them. Performance problems show up invarious ways. They can reduce
battery life, cause panningandscrollingto lagbehind the user's finger, or make the app appear
unresponsive foraperiod of time. The following list summarizes the decisions to make when
planning awell-performing, responsive app:

e Shouldloptimize actual app performance or perceived app performance?

e What performance tools should | use to discover performance-related issues?

¢ Whenshould|take performance measurements?

e What devicesshould | take performance measurements on?

e Do lneedtocompletelyunderstand the platformto determinewhere toimproveapp
performance?

Optimizing performance is more than justimplementing efficient algorithms. Another way to think
about performance isto considerthe user's perception of app performance. The user's app
experience can be separated into three categories —perception, tolerance, and responsiveness.

167

e Perception. User perception of performance can be defined as how favorably they recall the
timeittook to performtheir tasks within the app. This perception doesn't always match
reality. Perceived performance can be improved by reducing the amount of time between
activitiesthatthe userneedsto performtoaccomplish atask, and by allowing
computationallyintensive operations to execute without blocking the userfrom performing
otheractivities.

e Tolerance. A user'stolerance fordelay depends on how longthe user expects an operation
to take. For example, auser might find sending datatoa web service intolerable if the app
becomes unresponsive duringthis process, evenforafew seconds. You can increase auser's
tolerance fordelay by identifying tasks in yourapp thatrequire substantial processing time
and limiting or eliminating user uncertainty during those tasks by providing a visual
indication of progress. And you can use async APIs to avoid making the app appearfrozen.

e Responsiveness. Responsiveness of an appis relative to the activity being performed. To
measure and rate the performance of an activity, you must have a time interval to compare
it against. We used the guideline thatif an activity takes longerthan 500 milliseconds, the
app mightneedto provide feedback to the userin the form of a visual indication of
progress.

Therefore, both actual app performance and perceived app performance should be optimizedin
orderto deliverawell-performing, responsive app.

One technique fordetermining where code optimizations have the greatest effectinreducing
performance problemsisto performapp profiling. The profiling tools for Windows Store apps
enable youto measure, evaluate, and find performance-related issues in your code. The profiler
collects timinginformation for apps by using a sampling method that collects CPU call stack
information atregularintervals. Profiling reports display information about the performance of your
app and help you navigate through the execution paths of your code and the execution cost of your
functions sothat you can find the best opportunities for optimization. Formore info see How to
profile Visual C++, Visual C#, and Visual Basiccode in Windows Store apps on a local machine.To
learn how to analyze the datareturned fromthe profilersee Analyzing performance data for Visual

C++, Visual C#, and Visual Basiccode in Windows Store apps. Inaddition to using profiling tools to
measure app performance, we also used PerfView and Windows Performance Analyzer (WPA).

PerfView isaperformance analysis tool that helpsisolate CPUand memory-related performance
issues. WPAis a set of performance monitoring tools used to produce performance profiles of apps.
We used both of these tools fora general diagnosis of the app’s performance. For more info about
PerfView see PerfView Tutorial. For more info about WPA see Windows Performance Analyzer.

Measuringyourapp's performance during the early stages of development can add enormous value
to your project. We recommend that you measure performance as soon as you have code that
performs meaningful work. Early measurements give you agood idea of where the high costsin your
app are, and can inform design decisions. It can be very costly to change design decisions lateronin
the project. Measuring performance late in the product cycle can resultinlast minute changes and
poor performance. For more info see General best practices for performance.

http://msdn.microsoft.com/en-us/library/windows/apps/hh696631.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh696631.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780914.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780914.aspx
http://go.microsoft.com/fwlink/?LinkID=278825
http://msdn.microsoft.com/en-us/library/windows/apps/ff191077.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx

168

At a minimum, take performance measurements on hardware that has the lowest anticipated
specifications. Windows 8 runs on a wide variety of devices, and taking performance measurements
on one type of device won't always show the performance characteristics of other form factors.

You don't need to completely understand the platform to determine where you might need to
improve performance. By knowing what parts of your code execute most frequently, you can
determine the best places to optimize yourapp.

Performance considerations

A well-performing app respondsto useractions quickly, and with no noticeable delay. We spent
much time learning what works and what doesn't work when creating a responsive Windows Store
app. Here are some thingsto remember:

e Limitthe startup time.

e Emphasize responsiveness.

e Trim resource dictionaries

e Optimize the element count.

e Reuseidentical brushes.

e Use independentanimations.

e Minimize the communication between the app and the web service.
e Limitthe amount of data downloaded fromthe web service.

e Use Ul virtualization.

e Avoidunnecessary termination.

e Keepyourapp's memory usage low whenit'ssuspended.

e Reduce battery consumption.

e Minimize the amount of resources that yourapp uses.

e Limitthetime spentintransition between managed and native code.
e Reduce garbage collectiontime.

Limit the startup time

It's importantto limit how much time the userspends waiting whileyour app starts. There are a
number of techniques you can use to do this:

e You can dramaticallyimprove the loading time of an app by packingits contentslocally,
including XAML, images, and any otherimportant resources. If an app needs a particularfile
atinitialization, you can reduce the overall startup time by loading it from disk instead of
retrievingitremotely.

¢ Youshouldonly reference assemblies that are necessary to the launch of your appin startup
code so that the common language runtime (CLR) doesn'tload unnecessary modules.

e Deferloadinglarge in-memory objects while the app is activating. If you have large tasks to
complete, providea custom splash screen sothat yourapp can accomplish these tasksinthe
background.

169

In addition, apps have different startup performance atfirstinstall and at steady state. When your
app isfirstinstalled onauser's machine, itis executed usingthe CLR's just-in-time (JIT) compiler.
This meansthat the firsttime a methodis executed it has to wait to be compiled. Later, apre-
compilation service pre-compiles all of the modules thathave beenloaded on auser's machine,
typically within 24 hours. Afterthis service has run most methods nolongerneedto be JIT compiled,
and yourapp benefits fromanimproved startup performance. For more info see Minimize startup

time.
Emphasize responsiveness

Don't block yourapp with synchronous APls, because if you do the app can't respond to new events
while the APlis executing. Instead, use asynchronous APls that executein the background and
informthe app whenthey've completed by raisingan event. For more info see Keep the Ul thread

responsive.

Trimresource dictionaries

App-wide resources should be stored in the Application object to avoid duplication, butifyouusea
resource ina single page thatis not the initial page, putthe resource in the resource dictionary of
that page. Thisreduces the amount of XAML the framework parses when the app starts. For more
info see Optimizeloading XAML.

Optimize the elementcount

The XAML frameworkis designed to display thousands of objects, but reducing the number of
elements on apage will make yourapp renderfaster. You can reduce a page’s element count by
avoiding unnecessary elements, and collapsing elements thataren'tvisible. For more info see
Optimize loading XAML.

Reuseidentical brushes

Create commonly used brushes as root elementsinaresource dictionary, and then referto those
objectsintemplates asneeded. XAMLwill be able to use the same objects across the different
templates and memory consumption will be less thanif the brushes were duplicated in templates.
For more info see Optimize loading XAML.

Use independentanimations

An independent animation runsindependently from the Ul thread. Many of the animation types
usedin XAML are composed by a composition enginethatruns ona separate thread, with the
engine’swork being offloaded from the CPU to the graphics processing unit (GPU). Moving
animation composition to anon-Ul thread means thatthe animation won’tjitter or be blocked by
the app workingonthe Ul thread. Composingthe animation onthe GPU greatly improves
performance, allowing animations to run at a smooth and consistent frame rate.

http://msdn.microsoft.com/en-us/library/windows/apps/hh994639.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994639.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994635.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994635.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx

170

You don’t need additional markup to make youranimationsindependent. The system determines
whenit's possible to compose the animationindependently, but there are some limitations for
independent animations. For more info see Make animations smooth.

Minimize the communication between the app and the web service

In orderto reduce the interaction between the AdventureWorks Shopper reference implementation
and its web service as much data as possibleisretrieved in asingle call. Forexample, instead of
retrieving product categoriesin one web service call, and then retrieving products fora categoryina
second web service call, AdventureWorks Shopper retrieves a category and its productsin asingle
web service call.

In addition, the AdventureWorks Shopper referenceimplementation uses the
TemporaryFolderCacheService class to cache data from the web service to the temporary app data
store. This helpsto minimize the communication between the app and the web service, provided
that the cached dataisn't stale. For more info see Caching data.

Limit the amount of data downloaded from the web service

The GetRootCategoriesAsync method in ProductCatalotRepository class retrieves datafor display
on the HubPage, as shown in the following code example.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

rootCategories = await _productCatalogRepository.GetRootCategoriesAsync(5);

The call to the GetRootCategoriesAsync method specifies the maximum amount of products to be
returned by each category. This parametercan be usedto limitthe amount of data downloaded
fromthe web service, by avoiding returning anindeterminate number of products for each category.
For more info see Consumingthe data.

Use Ul virtualization

Ul virtualization enables controls that derive from ItemsControl (thatis, controls that can be usedto
presentacollection of items) to only load into memory those Ul elements that are near the
viewport, orvisibleregion of the control. As the user pans through the collection, elements that
were previously nearthe viewport are unloaded from memory and new elements are loaded.

Controlsthat derive from ItemsControl, such as ListView and GridView, perform Ul virtualization by
default. XAMLgenerates the Ul for the itemand holdsitin memory whenthe itemis close to being

visible onscreen. When theitemisnolongerbeingdisplayed, the control reuses that memory for
anotheritemthatis close to beingdisplayed.

If you restyle an IltemsControl to use a panel otherthanits default panel, the control continues to
support Ul virtualization aslongasit uses a virtualizing panel. Standard virtualizing panels include

http://msdn.microsoft.com/en-us/library/windows/apps/hh994638.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130650.aspx#Consuming_the_data
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx

171

WrapGrid and VirtualizingStackPanel. Using standard non-virtualizing panels, which include
VariableSizedWrapGrid and StackPanel, disables Ul virtualization for that control.

Ul virtualizationis not supported forgrouped data. If performance is anissue, limit the size of your
groups or if you have lots of itemsin a group, use another display strategy for group detail views like
SemanticZoom.

In addition, make sure thatthe Ul objects that are created are not overly complex. Asitems come
intoview, the framework must update the elementsin cached item templates with the data of the
items coming onto the screen. Reducing the complexity of those XAMLtrees can pay off bothinthe
amount of memory needed tostore the elements and the time it takes to data bind and propagate
the individual properties within the template. This reduces the amount of work that the Ul thread
must perform, which helpsto ensure thatitems appearimmediatelyin a collection that a user pans
through. For more info see Load, store, and display large sets of data efficiently.

Avoid unnecessary termination

An app can be suspended when the user movesittothe background or when the systementersa
low powerstate. Whenthe app is being suspended, it raises the Suspending eventand hasupto 5
secondstosave its data. If the app's Suspending event handler doesn't complete within 5seconds,
the systemassumesthatthe app has stoppedrespondingand terminatesit. Aterminated app hasto
go through the startup process againinstead of beingimmediately loaded into memory when auser
switchestoit.

The AdventureWorks Shopper referenceimplementation saves page state while navigating away
from a page, ratherthan saving all page state on suspension. This reduces the amount of time that it
takesto suspendthe app, and hence reduces the chance of the system terminating the app during
suspension. Inaddition, AdventureWorks Shopper does not use page caching. This prevents views
that are not currently active from consuming memory, which would increase the chance of
termination when suspended. For more info see Minimize suspend/resume time and Handling
suspend, resume and activation.

Keep your app's memory usagelow whenit's suspended

When your app resumes from suspension, it reappears nearly instantly. But when yourapp restarts
afterbeingclosed, it might take longerto appear. So preventing yourapp from being closed when
it's suspended can help to manage the user's perception and tolerance of app responsiveness.

When your app begins the suspension process, it should freeany large objects that can be easily
rebuiltwhenitresumes. Doing so helpsto keep yourapp's memory footprintlow, and reduces the
likelihood that Windows will terminate your app aftersuspension. For more info see Minimize
suspend/resumetime and Handling suspend, resume and activation.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.wrapgrid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.virtualizingstackpanel.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.variablesizedwrapgrid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.stackpanel.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994637.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx

172

Reduce battery consumption

The CPU isa major consumer of battery power on devices, even at low utilization. Windows 8tries
to keepthe CPUinalow powerstate whenitis idle, butactivatesitasrequired. While most of the
performance tuningthatyou undertake will naturally reduce the amount of powerthatyourapp
consumes, you can furtherreduce yourapp's consumption of battery power by ensuring that it
doesn'tunnecessarily pollfor datafromweb services and sensors. Formore info see General best
practices for performance.

Minimize the amount ofresources that your app uses

Windows has to accommodate the resource needs of all Windows Store apps by using the Process
Lifetime Management (PLM) system to determine which appsto close in orderto allow otherapps
to run. Aside effect of thisis that if yourapp requests alarge amount of memory, otherapps might
be closed, evenif yourapp thenfreesthat memory soon afterrequestingit. Minimize the amount of
resourcesthatyour app usesso that the userdoesn'tbeginto attribute any perceived slownessin
the systemto yourapp. For more infosee Improve garbage collection performance and Garbage

Collection and Performance.

Limit the time spentin transition between managed and native code

Most of the Windows Runtime APIs are implemented in native code. This hasanimplication for
Windows Store apps writtenin managed code, because any Windows Runtime invocation requires
that the CLR transitions from a managed stack frame to a native stack frame and marshals function
parametersto representations accessible by native code. While this overhead is negligible for most
apps, if you make many calls to Windows Runtime APIs in the critical path of an app, this cost can
become noticeable. Therefore, you should try to ensure that the time spentin transition between
languagesis small relativeto the execution of the rest of your code.

The .NET for Windows Store apps types don'tincurthis interop cost. You can assume that typesin
namespace which begin with "Windows." are part of the Windows Runtime, and types in namespace
which beginwith "System." are .NET types.

If your app isslow because of interop overheard, you canimprove its performance by reducing calls
to Windows Runtime APIs on critical code paths. Forexample, if acollectionis frequently accessed,
thenit is more efficient to use a collection from the System.Collections namespace, ratherthana

collection from the Windows.Foundation.Collections namespace. For more info see Keep yourapp

fastwhenyou use interop.

Reduce garbage collection time

Windows Store apps written in managed code get automatic memory management fromthe .NET
garbage collector. The garbage collector determines when to run by balancingthe memory
consumption of the managed heap with the amount of work a garbage collection needs to do.
Frequent garbage collections can contribute toincreased CPUconsumption, and therefore increased
power consumption, longerloadingtimes, and decreased frame ratesinyourapp.

http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ee851764.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ee851764.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230232.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.collections.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.collections.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994636.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994636.aspx

173

If you have an app with a managed heap size that's substantially larger than 100MB, you should
attempt to reduce the amount of memory you allocate directly in order to reduce the frequency of
garbage collections. Formore info see Improve garbage collection performance.

Additional considerations

When profilingyourapp, follow these guidelines to ensure thatreliable and repeatable performance
measurements are taken:

e Make sure that you profile the app on the device that's capturing performance
measurements whenitis pluggedin,and whenitis runningon a battery. Many systems
conserve powerwhenrunningon abattery, and so operate differently.

e Make sure that the total memory use on the systemislessthan 50 percent. If it's higher,
close apps until youreach 50 percentto make sure thatyou're measuring the impact of your
app, rather than that of other processes.

¢ Whenyouremotely profilean app, we recommend thatyouinteract with the app directly
on the remote device. Although you can interact with an app viaRemote Desktop
Connection, doing so can significantly alter the performance of the app and the performance
data that you collect. Formore info, see How to profile Visual C++, Visual C#, and Visual
Basic code in Windows Store apps on a remote device.

e To collectthe mostaccurate performance results, profilearelease build of yourapp. See
How to: Set Debug and Release Configurations.
e Avoid profilingyourappinthe simulatorbecause the simulator can distort the performance

of yourapp.

http://msdn.microsoft.com/en-us/library/windows/apps/hh994643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh972878.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh972878.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/wx0123s5.aspx

174

Testing and deploying AdventureWorks Shopper (Windows Store
business apps using C#,XAML, and Prism)

Summary

e Use multiple modes of testing for best results.
e Use unittestsandintegration teststoidentify bugs attheirsource.

e Testasynchronous functionality by creatingamock version of the instance thatthe classto
be tested depends on, and specify an asynchronous delegatein the unit test that will be
executed by the asynchronous method inthe mock object.

Windows Store apps should undergo various modes of testingin orderto ensure thatreliable, high
quality apps result. Forthe AdventureWorks Shopper reference implementation we performed unit
testing, integration testing, userinterface testing, suspend and resume testing, security testing,
localization testing, accessibility testing, performance testing, device testing, and validation of the
app userexperience againstthe userexperience guidelines on the Windows Dev Center.

You will learn

e How the various modes of testing contribute to the reliability and correctness of an app.
¢ How to use the testing toolsthatare available in Microsoft Visual Studio 2012.
e How to testasynchronous functionality in automated tests.

Applies to

e WindowsRuntime for Windows 8
e CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

Testing helpsto ensure thatan appis reliable, correct, and of high quality. The following list
summarizes the decisions to make when testing a Windows Store app:

e How shouldItestthe app?

e How shouldIdeploythe app?

e How can | testthe app for compliance with the Windows Store certification requirements?
e How should | manage the app after deployment?

You can testyour app in many ways including unit testing, integration testing, userinterface testing,
suspend and resume testing, security testing, localization testing, accessibility testing, performance
testing, device testing,and validation of the app user experience against the user experience
guidelines onthe Windows Dev Center. For more info see Testing AdventureWorks Shopper.

175

While you can use the Windows Store to market and distribute apps, business apps will often be
distributed directly tothe end-user by the IT organization within acompany. Formore info see
Deploying and managing Windows Store apps.

Regardless of how yourapp will be deployed, you should validate and test it by usingthe Windows
App Certification Kit. The kit performs anumber of tests to verify that your app meets certification
requirements forthe Windows Store. In addition, as you plan your app, you should create a
publishing-requirements checklist to use when you test yourapp. For more info see Testingyourapp
with the Windows App Certification Kit and Creating a Windows Store certification checklist.

Tools such as Windows Intune and System Center Configuration Manager can be used to manage
access to business apps. In addition, IT staff can control the availability and functionality of the
Windows Store to client computers based on the business policies of their environment. For more
infosee Deploying and managing Windows Store apps.

Testing AdventureWorks Shopper

The AdventureWorks Shopperreferenceimplementation was designed for testability, with the
following modes of testing being performed:

e Unittesting testsindividual methodsinisolation. The goal of unittestingisto check that
each unitof functionality performs as expected so that errors don't propagate throughout
the app. Detectingabug where it occurs is more efficient than observing the effect of abug
indirectly ata secondary pointof failure. For more infosee Unitandintegration testing.

e Integrationtesting verifies thatthe components of an app work together correctly.
Integration tests examine app functionality in amannerthat simulates the way the appis
intended to be used. Normally, anintegration test will drive the layerjust belowthe user
interface. Inthe AdventureWorks Shopper referenceimplementation, you can recognize this

kind of test because itinvokes methods of the view model. The separation of views from the
view model makes integration testing possible. For more infosee Unitandintegration
testing.

e Userinterface (Ul) testing involves directinteraction with the userinterface. This type of
testing often needs to performed manually. Automated integration tests can be substituted

for some Ul testing but can't eliminate it completely.

e Suspendand resume testing ensuresthatyour app behaves as expected when Windows
suspendsorresumesit, oractivatesit aftera suspend and shutdown sequence. For more
infosee Suspend and resume testing.

e Security testing focus on potential security issues. It's based on a threat model that

identifies possible classes of attack. For more info see Security testing.

e Localization testing makes sure that an app worksin all language environments. For more
infosee Localization testing.

e Accessibility testing makes sure than an app supports touch, pointer, and keyboard
navigation. Italso makes sure that different screen configurations and contrasts are
supported, and thatthe contents of the screen can be read with Windows Narrator. For
more info see Accessibility testing.

176

e Performance testingidentifies how an app spendsits time whenit's running. In many cases,
performance testing canlocate bottlenecks or methods that take a large percentage of an
app's CPU time. For more info see Performance testing.

e Device testing ensuresthanapp works properly onthe range of hardware thatit supports.
For example, it'simportantto test thatan app works with various screen resolutions and
touch-input capabilities. For more info see Device testing.

For more info on test automation, see Testing for Continuous Delivery with Visual Studio 2012.

Unit and integration testing

You should expectto spend about the same amount of time writing unitand integration tests as you
do writingthe app's code. The effortis worth the work because it results in much more stable code
that has fewerbugsandrequires less revision.

In the AdventureWorks Shopperreference implementation we used the Model -View-ViewModel
(MVVM) pattern to separate the concerns of presentation, presentation logic, and model. The
MVVM pattern makes it easierto maintain and test your Windows Store app, especially asit grows.
For more infosee Usingthe MVVM pattern.

The AdventureWorks.Shopper.Tests, AdventureWorks.UlLogic.Tests,
AdventureWorks.WebServices.Tests, Microsoft.Practices.Prism.PubSubEvents.Tests, and
Microsoft.Practices.Prism.StoreApps.Tests projects of the AdventureWorks Shopper Visual Studio
solution contain all the code that supports testing the Microsoft.Practices.Prism.PubSubEvents and
Microsoft.Practices.Prism.Store Apps libraries, and the AdventureWorks Shopper reference
implementation. The AdventureWorks.WebServices.Tests project usesthe
Microsoft.VisualStudio.QualityTools.UnitTestFramework, with the remaining test projects using the
MsTestFramework for Windows Store apps. Test methods can be identified by the TestMethod

attribute above the method name.

You can examine the unittests by opening the AdventureWorks Shopper Visual Studio solution. On
the menu bar, choose Test> Windows > Test Explorer. The Test Explorer window lists all of the
AdventureWorks Shopper unit tests, as shownin the following diagram.

http://msdn.microsoft.com/en-us/library/windows/apps/jj159345.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130657.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.visualstudio.testtools.unittesting.testmethodattribute.aspx

177

Test Explorer * 0 x
- Saarch =
® [z~ Search el
‘Run All | Run.. =
4 Passed Tests (191) A
ﬂ Add_[mvalidatesCachedCart 1 ms
ﬂ J:I:{||,|E:h-.;*|:lu>|_1t[}.',:r.j1_lf: -'|||‘_:_|:'|<||}|-_'r_|:|}'(||_|t < 1 ms

ﬂ AddProductToCart_AaddsMewShopping 4 ms
@ AddProductToCar t_AddsMewShoppin < 1ms
& AddProductToCar t_AddsMewsShoppin < 1ms
ﬂ AutoWireViewModel_With_Custam_Res 1ms
ﬂ AutoWireviewdodel _With_Custom_Res 1ms
G AutoWireviewbodel_With_Factory_Regi 3ms
& AwshopperTestRunnerCheck < 1ms
G CandddSubscriptionWhileEventlsFiring < 1ms

G CanHavebultipledubscribersAndRais < 1ms

Unit tests should focus on how the code undertestfunctionsinresponse tovalues returned by
dependent objects. Agood approach to increase software testability isto isolate dependent objects
and have them passed intoyourbusinesslogicusingan abstraction such as an interface. This
approach allows the dependent object to be passedintothe businesslogicat run time. Inaddition,
inthe interests of testability, it allows amock version of the dependent object to be passedin at test
time. By using mocks, the return values or exceptions to be thrown by mock instances of dependent
objects can easily be controlled.

Testing synchronous functionality

Synchronous functionality can easily be tested by unit tests. The following code example shows the
Validation_Of_Field_When_Valid_Should_Succeed test method that demonstrates testing
synchronous functionality. The unit test verifies that the BindableValidator class can successfully
validate the value of the Title property in the MockModelWithValidation class.

C#: Microsoft.Practices.Prism.StoreApps.Tests\BindableValidatorFixture.cs

[TestMethod]
public void Validation Of_ Field When_Valid_ Should Succeeed()

{
var model = new MockModelWithValidation() { Title = "A valid Title" };
var target = new BindableValidator(model);

bool isValid = target.ValidateProperty("Title");

Assert.IsTrue(isValid);
Assert.IsTrue(target.GetAllErrors().Values.Count == 9);

This method createsinstances of the MockModelWithValidation and the BindableValidator classes.
The BindableValidatorinstance is used to validate the contents of the Title propertyin the

178

MockModelWithValidation instance by calling the ValidateProperty method on the
BindableValidatorinstance. The unit test passesif the ValidateProperty method returns true, and
the BindableValidatorinstance has no errors.

For more info about validation, see Validating userinput.

Testing asynchronous functionality

Asynchronous functionality can be tested by creatinga mock version of the dependent service that
has an asynchronous method, and specifyingan asynchronous delegate inthe unit test that will be
executed by the asynchronous method inthe mock object. The following code example shows the
OnNavigatedTo_Fill_Root_Categories test method, which demonstrates testing asynchronous
functionality. The unittest verifies that whenthe hub page is navigated to the RootCategories
property of the HubPageViewModel class will contain three categories.

C#: AdventureWorks.UlLogic.Tests\ViewModels\HubPageViewModelFixture.cs

[TestMethod]
public void OnNavigatedTo_Fill RootCategories()

{

var repository = new MockProductCatalogRepository();
var navigationService new MockNavigationService();
var searchPaneService new MockSearchPaneService();

repository.GetRootCategoriesAsyncDelegate = (maxAmmountOfProducts) =>

{

var categories = new ReadOnlyCollection<Category>(new List<Category>{
new Category(),
new Category(),
new Category()

s

return Task.FromResult(categories);

s

var viewModel = new HubPageViewModel (repository, navigationService, null,
null, searchPaneService);
viewModel .OnNavigatedTo(null, NavigationMode.New, null);

Assert.IsNotNull(viewModel.RootCategories);
Assert.AreEqual (((ICollection<CategoryViewModel>)viewModel.RootCategories)
.Count, 3);

The method createsinstances of the mock classes that are required to create an instance of the
HubPageViewModel class. The GetRootCategoriesAsyncDelegate, when executed, returns a Task of
type ReadOnlyCollection with three Category objects. Aninstance of the HubPageViewModel class
isthen created, with its OnNavigatedTo method being called. The OnNavigatedTo method calls the
GetRootCategoriesAsync method, in this case on the MockProductCatalogRepositoryinstance,

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx

179

whichinturn executes the GetRootCategoriesAsyncDelegate. The result of thisis that the
RootCategories property of the HubPageViewModel instanceis populated with the datareturned
by the GetRootCategoriesAsyncDelegate. The unittest passesif the RootCategories property
containsthree items of data.

Note Ifyou use the await operatorina test method, the test method mustreturn a Task and use
the async modifierinits method signature.

For more infoaboutthe unittestingtoolsin Visual Studio, see Verifying Code by Using Unit Tests.

Suspend and resume testing

When you debuga Windows Store app, the Debug Location toolbar contains a drop-down menu
that enables youto suspend, resume, orsuspend and shut down (terminate) the running app. You
can use thisfeature to ensure thatyourapp behaves as expected when Windows suspends or
resumesit, oractivatesitafter a suspend and shutdown sequence. The following diagram shows the
drop-down menuthat enablesyouto suspendthe runningapp.

17016] AdventureWorks AWShapp = E Suspend =]

Suspend
Resume

Suspend and shutdewn

If you wantto demonstrate suspending from the debugger, run AdventureWorks Shopperin the
Visual Studio debugger and set breakpointsinthe MvvmAppBase.OnSuspending and
MvvmAppBase.InitializeFrameAsync methods. Then select Suspend and shutdown from the Debug
Location toolbar. The app will exit. Restart the app inthe debugger, and the app will follow the code
path forresuming fromthe Terminated state. In AdventureWorks Shopper, thislogicisinthe
MvvmAppBase.InitializeFrameAsync method. For more info see Guidelines forapp suspend and

resume and Handling suspend, resume, and activation.

Security testing

We used the STRIDE methodology forthreat modeling as a basis for security testingin
AdventureWorks Shopper. Formore info see Uncover Security Design Flaws Using The STRIDE
Approach and Windows security features test.

Localization testing

We used the Multilingual App Toolkit to provide pseudo-localized versions of AdventureWorks
Shopperforlocalization testing. Formore info see How to use the Multilingual App Toolkit,

Guidelines and checklistforapp resources, and Guidelines and checklist for globalizing yourapp .

http://msdn.microsoft.com/en-us/library/windows/apps/hh156528.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh156513.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd264975.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://go.microsoft.com/fwlink/p/?linkid=260913
http://go.microsoft.com/fwlink/p/?linkid=260913
http://msdn.microsoft.com/en-us/library/windows/apps/hh920280.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj572370.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx

180

Accessibility testing

We used a number of testing tools to verify the accessibility of AdventureWorks Shopper, including
Windows Narrator, Inspect, Ul Accessibility Checker, Ul Automation Verify, and Accessible Event
Watcher. For more info see Testing your app for accessibility and Design for accessibility.

Performance testing

In additionto using profiling tools to measure app performance, we also used the Windows
Performance Toolkit (WPT). WPT can be used to examine app performance, bothinreal time and by
collectinglog dataforlateranalysis. We used this tool fora general diagnosis of the app's
performance. For more info see Windows Performance Toolkit Technical Reference, General best
practicesfor performance, and Performance best practices for Windows Store apps using C++, C#,
and Visual Basic.

Device testing

Visual Studioincludes asimulatorthat you can use to run your Windows Store appin various device
environments. Forexample, you can use the simulatorto check whetheryourapp works correctly
with a variety of screen resolutions and with avariety of input hardware. You can simulate touch
gesturesevenifyou're developingthe app ona computerthatdoesn't supporttouch. The following
diagram shows AdventureWorks Shopperrunninginthe simulator.

http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd318521.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh920985.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh920986.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd317979.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd317979.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh162945.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh750313.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh750313.aspx

181

Mountain-400-W Red, 42

Discount Codes: Thic &
Total: %

$577.12 —ss049

To start the simulator, click Simulatorin the drop-down menu on the Debugtoolbarin Visual Studio.
The other choicesinthis drop-down menu are Local Machine and Remote Machine.

In addition to using the simulator, we also tested Adventure Works Shopper on a variety of
hardware. You can use remote debuggingto testyourapp on a device thatdoesn't have Visual
Studioinstalled onit. For more info see Running Windows Store apps on a remote machine, Testing
Windows Store apps Running on a Device Using the Exploratory Test Window, and Testing Windows
Store apps Runningon a Device Using Microsoft Test Runner.

Testing your app with the Windows App Certification Kit

Regardless of how yourapp will be deployed, you should validate and test it by usingthe Windows
App Certification Kit. The kit performs anumber of tests to verify that yourapp meets certain
certification requirements forthe Windows Store. These testsinclude:

¢ Examiningthe app manifestto verify thatits contents are correct.

e Inspectingtheresources definedinthe app manifestto ensure thatthey are presentand
valid.

o Testingthe app'sresilienceand sstability.
e Determininghow quickly the app starts and how fastit suspends.
¢ Inspectingthe appto verifythatitcalls only APIs for Windows Store apps.

http://msdn.microsoft.com/en-us/library/windows/apps/hh441469.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh873101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh873101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh405417.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh405417.aspx

182

e Verifyingthatthe app uses Windows security features.

You mustrun the Windows App Certification Kiton a release build of yourapp; otherwise, validation
fails. Formore info, see How to: Set Debug and Release Configurations.

In addition, it's possible to validate yourapp wheneveryou buildit. If you're running Team
Foundation Build, you can modify settings on your build machine so that the Windows App
Certification Kit runs automatically every time yourapp is built. For more info, see Validatinga
package in automated builds.

For more info, see Testing your app with the Windows App Certification Kit.

Creating a Windows Store certification checklist

You may choose to use the Windows Store as the primary method to make yourapp available. For
infoabout how to prepare and submityourapp, see Sellingapps.

As you planyour app, we recommend that you create a publishing-requirements checklist to use
laterwhen you testyour app. This checklist can vary depending on how you've configured your
business operations and the kind of app you're building. For more info and standard checklists, see
Publishingyourapp to the Store.

Before creating yourapp package for upload to the Windows Store, be sure to do the following:

e Reviewthe app-submission checklist. This checklistindicates the information that you must
provide whenyou upload yourapp. For more info, see App submission checklist.

e Ensurethat you have validated arelease build of yourapp with the Windows App
Certification Kit. Formore info, see Testing your app with the Windows App Certification Kit.

o Take some screenshotsthat show off the key features of yourapp.

e Have other developerstestyourapp. For more info, see Sharingan app package locally.

In addition, if yourapp collects personal data or uses software thatis provided by others, you must
alsoinclude aprivacy statement oradditional license terms.

Deploying and managing Windows Store apps

While you can use the Windows Store to market and distribute apps, business apps will often be
distributed directly to the end-user by the IT organization within acompany. The process of installing
apps on Windows 8 devices without going through the Windows Store is called side-loading. Forinfo
about some best practicesto help ensure that users have a good experience installingand running
side-loaded apps for the first time, see Deployment.

IT managers have several options formanaging side-loaded apps and apps distributed from the
Windows Store. Formore info see Management of Windows Store apps.

http://msdn.microsoft.com/en-us/library/windows/apps/wx0123s5.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994667.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994667.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230836.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694062.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh975356.aspx
http://go.microsoft.com/fwlink/?LinkID=296263
http://msdn.microsoft.com/en-us/library/windows/apps/jj659079.aspx#management_of_windows_store_apps

183

Meet the AdventureWorks Shopper team (Windows Store business
apps using C#,XAML, and Prism)

This guide provides guidanceto developers who want to create a Windows Store business app using
C#, Extensible Application Markup Language (XAML), the Windows Runtime, and modern
development practices. The guide comes with source code and documentation.

The goal of patterns & practicesis to enhance developersuccess through guidance on designingand
implementing software solutions. We develop content, reference implementations, samples, and
frameworks thatexplain how to build scalable, secure, robust, maintainable software solutions. We
work with community and industry experts on every project to ensure that some of the best minds
inthe industry have contributed to and reviewed the guidanceas it develops. Visit the patterns &
practices Developer Centertolearn more about patterns & practices and what we do.

Meet the team

This guide was produced by:

http://www.microsoft.com/practices/
http://www.microsoft.com/practices/

184

e Program Management: Blaine Wastell

e Development: Francis Cheung, Brian Noyes (Solliance), Diego Poza (Southworks SRL),
Mariano Vazquez (Southworks SRL)

e Writtenguidance: David Britch (Content Master Ltd)

e Test: ColinCampbell (Modeled Computation LLC), Carlos Farre, Mitesh Neema (Infosys Ltd),
Hardik Patel (Infosys Ltd), Rohit Sharma, Veerapat Sriarunrungrueang (Adecco)

e Graphicdesign: ChrisBurns (Linda Werner & AssociatesInc.)

e Bicycle Photography: Lincoln Potter (Samaya LLC) and Mike Rabas (Woodinville Bicycle)

e Editorial support: RoAnn Corbisier

We wantto thankthe customers, partners, and community members who have patiently reviewed
our early contentand drafts. We especially want to recognize Damir Arh, Christopher Bennage, Ifiigo
Bosque (Independent Consultant), Alon Fliess (Chief Architect, CodeValue), Ariel Ben Horesh
(CodeValue), Ohad Israeli (Director of business development, NServiceBus), Brian Lagunas
(Infragistics), Thomas Lebrun, Jeremy Likness (Principal Consultant, Wintellect), Chan Ming Man
(Section Manager, AMD), Paulo Morgado, Oleg Nesterov (Senior Developer, Sberbank CIB), Jason De
Oliveira (CTO at Cellenza, MVP C#), Caio Proiete (Senior Trainer, CICLO.pt), Jenner Maciejewsky
Rocha (Consultore Desenvolvedor, MVP Visual Basic), Mitchel Sellers (CEQ/Director of
Development, lowaComputerGurus Inc.), Tomer Shamam (Software Architect, CodeV alue), Bruno
Sonnino (Revolution Software), Perez Jones Tsisah (Freelance Software Developer), Daniel Vaughan,
and Davide Zordan (Microsoft MVP) for their technical insights and support throughout this project.

We hope that you enjoy working with Prism for the Windows Runtime, the AdventureWorks

Shopperreferenceimplementation source files, and this guide as much as we enjoyed creating it.
Happy coding!

http://www.lincolnpotter.com/
http://www.woodinvillebicycle.com/

185

Quickstarts for AdventureWorks Shopper (Windows Store business
apps using C#,XAML, and Prism)

This guidance includes anumber of Quickstarts thatillustrate specificconcepts. These Quickstarts
use Prismfor the Windows Runtime.

Quickstarts are small, focused apps thatillustrate specificconcepts. The following Quickstarts are
includedinthis guidance:

e Validation Quickstart for Windows Store apps using the MVVM pattern

e Eventaggregation Quickstart for Windows Store apps

e Bootstrappingan MVVM Windows Store app Quickstart using Prism forthe Windows
Runtime

186

Validation Quickstart for Windows Store apps using the MVVM
pattern

Summary

e Specifyvalidationrules for model properties by adding data annotation attributes tothe
properties.

e Callthe ValidatableBindableBase.ValidateProperties method to validateall the properties
ina model objectthat possesses an attribute that derives from the ValidationAttribute
attribute.

e Implementthe ValidatableBindableBase.ErrorsChanged eventinyourview model class, in
orderto be notified when the validation errors change.

This Quickstart demonstrates how to validate userinputfor correctnessina Windows Store app by
using Prism for the Windows Runtime. The Quickstart uses the Model-View-ViewModel (MVVM)
pattern, and demonstrates how to synchronously validate data using dataannotations, and how to
highlight validation errors on the Ul by usingan attached behavior.

You will learn

e How to synchronously validate datastored ina bound model object.

¢ How to specifyvalidation rules for model properties by using dataannotations.
e How to triggervalidation through PropertyChanged events.

e How to highlightvalidation errors on the Ul with an attached behavior.

Applies to

e Windows Runtime for Windows 8
o CH
e Extensible Application Markup Language (XAML)

Building and running the Quickstart
Build the Quickstartas you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.
Afteryou build the project, you must deployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you runthe app fromthe debugger.
3. Afteryoudeploythe project, pick the Quickstarttile torunthe app. Alternatively, from
Visual Studio, onthe menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similarto the one shownin the following diagram.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

187

Validation Quickstart

First Mams

Middle Name

Last Name

Validate

This Quickstart performs synchronous validation of datastored ina model object. The page contains
three text boxesthatenable youto enteryourname. Whenyou enter data into a text box and the
text box losesfocus, the entered datais validated. In addition, when you select the Submit button,
the content of each text box isvalidated. To pass validation each text box must contain data
consisting of letters, spaces, and hyphens. If avalidation error occurs, the text box containing the
invalid datais highlighted with ared borderand the validation error details are displayed in red text
below the Submit button.

For more info about validation, see Validating userinput.

Solution structure

The ValidationQuickstart Visual Studio solution contains two projects: ValidationQuickstart, and
Microsoft.Practices.Prism.Store Apps. The ValidationQuickstart project uses Visual Studio solution
folderstoorganize the source code intothese logical categories:

e The Assets folder containsthe splash screenandlogoimages.

e The Behaviors foldercontains the attached behaviorthatis used to highlight controls that
have validation errors.

¢ The Common folder containsthe style resource dictionaries usedinthe app.

e The Modelsfoldercontainsthe model class usedinthe app, and a helperclass thatreturns
stringsfromthe app's resource file.

e The Strings folder contains resource strings forthe en-USlocale.

e TheViewModels folder contains the view model class thatis exposed to the view.

e The Viewsfoldercontainsthe view that makes up the Ul for the app's page.

188

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.
For more infoabout thislibrary, see Prism for the Windows Runtime reference. With little orno
modification, you can reuse many of the classes from this Quickstartin anotherapp. You can also

adapt the organization and ideas that this Quickstart provides.

Note This Quickstartdoesnotinclude any suspend and resume functionality. Foravalidation
implementation thatincludes suspend and resume functionality see Validating userinput.

Key classes in the Quickstart

There are several classes involved in validation. The text boxes in the UserinfoView page bind to
properties of a UserInfo model object.

The Userinfo class derives from the ValidatableBindableBase class thatis provided by the
Microsoft.Practices.Prism.StoreApps library. The base class contains an instance of the

BindableValidator class, and uses it to invoke validation wheneverabound property changes, or
when the userselects the Validate button.

The BindableValidatorinstance acts as the data source for validation error messages that are shown
inthe userinterface. Itisthe type of the ValidatableBindableBase class's Errors property.

To perform the validation, the BindableValidator class retrieves validation rules that are encoded as
custom attributes of the Userinfo object. It raises PropertyChanged and ErrorsChanged events
whenvalidation state changes.

The following diagram shows a conceptual view of the key classes involved in performing validation
inthis Quickstart.

T INotifyPropertyChanged

BindableBase

derives from
IValidatableBindableBase IMotifyPropertyChanged

ValidatableBinda ble\l =(BindablevValidator
Base) creates and uses k

N

get errors to

derives from
display

[Validatian rulasw (
TextBox

Userlnfo
_) set properties L‘

*

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

189

Specifying validation rules

Validation rules for dataare specified in the Userinfo model class. To participate in validation the
Userinfo class must derive from the ValidatableBindableBase class.

The text boxeson the UserinfoView page use compound binding path expressions such as "{Binding
Userinfo.FirstName, Mode=TwoWay}". This expression associates the text box's contents with the
FirstName property of the object that is returned by the Userinfo property of the page's data
context. This page's data contextis a UserInfoViewModel object.

The UserInfo class contains propertiesforstoringthe first, middle, and last names. Validation rules
for the value of each property are specified by adding attributes to each property that derive from
the ValidationAttribute attribute. The following code example shows the FirstName property from

the Userlnfo class.

Ci#: ValidationQuickstart\Model\UserlInfo.cs

private const string RegexPattern = @"\A\p{L}+([\p{Zs}\-1[\p{L}]+)*\z";

[Required(ErrorMessageResourceType = typeof (ErrorMessagesHelper),

ErrorMessageResourceName = "FirstNameRequired")]
[RegularExpression(RegexPattern, ErrorMessageResourceType =

typeof (ErrorMessagesHelper), ErrorMessageResourceName = "FirstNameRegex")]
public string FirstName
{

get { return _firstName; }

set { SetProperty(ref _firstName, value); }
}

The Required attribute of the FirstName property specifies that a validation failure occurs if the field
isnull, contains an empty string, or contains only white -space characters. The RegularExpression
attribute specifies that when the FirstName property is validated it must match the specified regular

expression.

The static ErrorMessagesHelper class is used to retrieve validation error messages from the resource
dictionaryforthe locale, andis used by the Required and RegularExpression validation attributes.
For example, the Required attribute on the FirstName property specifies thatif the property doesn't
contain avalue, the validation error message will be the resource string returned by the
FirstNameRequired property of the ErrorMessagesHelper class. In addition, the RegularExpression
attribute on the FirstName property specifies thatif the data in the property contains characters
otherthan letters, spaces, and hyphens, the validation error message will be the resource string
returned by the FirstNameRegex property of the ErrorMessagesHelper class.

Note Usingresource strings supportslocalization. However, this Quickstart only provides strings for
the en-USlocale.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx

190

Similarly, Required and RegularExpression attributes are specified on the MiddleName and
LastName propertiesinthe Userinfo class.

Triggering validation explicitly

Validation can be triggered manually when the userselects the Validate button. This calls the
ValidatableBindableBase.ValidateProperties method, which inturn calls the
BindableValidator.ValidateProperties method.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperties()

{
var propertiesWithChangedErrors = new List<string>();

// Get all the properties decorated with the ValidationAttribute attribute.
var propertiesToValidate = _entityToValidate.GetType() .GetRuntimeProperties()
.Where(c => c.GetCustomAttributes(typeof(ValidationAttribute)).Any());

foreach (PropertyInfo propertyInfo in propertiesToValidate)
{
var propertyErrors = new List<string>();
TryValidateProperty(propertyInfo, propertyErrors);
// If the errors have changed, save the property name to notify the update
// at the end of this method.
bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);
if (errorsChanged &&
I propertiesWithChangedErrors.Contains (propertyInfo.Name))
{
propertiesWithChangedErrors.Add (propertyInfo.Name);
}
}
// Notify each property whose set of errors has changed since the last
// validation.
foreach (string propertyName in propertiesWithChangedErrors)
{
OnErrorsChanged(propertyName);
OnPropertyChanged(string.Format(CultureInfo.CurrentCulture,
"Item[{0}]", propertyName));
}
return _errors.Values.Count == ©;
}

This method retrieves all properties that have attributes that derive from the ValidationAttribute
attribute, and attempts to validate them by calling the TryValidateProperty method for each

property. If new validation errors occur the ErrorsChanged and PropertyChanged events are raised

for each property than containsa new error.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

191

The TryValidateProperty method uses the Validator class to apply the validation rules. Thisis shown
inthe following code example.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

private bool TryValidateProperty(PropertyInfo propertyInfo,
List<string> propertyErrors)

{
var results = new List<ValidationResult>();
var context = new ValidationContext(_entityToValidate)
{ MemberName = propertyInfo.Name };
var propertyValue = propertyInfo.GetValue(_entityToValidate);
// Validate the property
bool isValid = Validator.TryValidateProperty(propertyValue, context, results);
if (results.Any())
{
propertyErrors.AddRange (results.Select(c => c.ErrorMessage));
}
return isValid;
}

Triggering validation implicitly on property change

Validationis automatically triggered wheneverabound property's value changes. When atwo way
bindinginthe UserinfoView class sets abound property inthe Userlnfo class, the SetProperty
methodis called. This method, provided by the BindableBase class, sets the property value and
raises the PropertyChanged event. However, the SetProperty methodis also overridden by the
ValidatableBindableBase class. The ValidatableBindableBase.SetProperty method calls the
BindableBase.SetProperty method, and then provided that the property value has changed, calls
the ValidateProperty method of the BindableValidator class instance.

The ValidateProperty method validates the property whose name is passed to the method by calling
the TryValidateProperty method shown above. If a new validation error occurs the ErrorsChanged
and PropertyChanged events are raised for the property.

Highlighting validation errors

Each text box on the Ul uses the HighlightOnErrors attached behaviorto highlight validation errors.
The following code example shows how this behavioris attached to a text box.

XAML: ValidationQuickstart\Views\UserIinfoView.xaml

<TextBox x:Name="FirstNameValue"
Grid.Row="2"
Text="{Binding UserInfo.FirstName, Mode=TwoWay}"
behaviors:HighlightOnErrors.PropertyErrors=
"{Binding UserInfo.Errors[FirstName]}" />

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validator.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

192

The attached behaviorgetsand sets the PropertyErrors dependency property. The following code
example shows the PropertyErrors dependency property defined in the HighlightOnErrors class.

C#: ValidationQuickstart\Behaviors\HighlightOnErrors.cs

public static DependencyProperty PropertyErrorsProperty =
DependencyProperty.RegisterAttached("PropertyErrors”,
typeof (ReadOnlyCollection<string>), typeof(HighlightOnErrors),
new PropertyMetadata(BindableValidator.EmptyErrorsCollection,
OnPropertyErrorsChanged));

The PropertyErrors dependency property is registered as a ReadOnlyCollection of strings, by the
RegisterAttached method. The dependency property also has property metadata assigned toit. This

metadataspecifies adefault value that the property system assigns to all cases of the property, and
a static method thatis automatically invoked by the property system wheneveranew property
value is detected. Therefore, when the value of the PropertyErrors dependency property changes,
the OnPropertyErrorsChanged methodisinvoked. The following code example shows the
OnPropertyErrorsChanged method.

C#: ValidationQuickstart\Behaviors\HighlightOnErrors.cs

private static void OnPropertyErrorsChanged(DependencyObject d,
DependencyPropertyChangedEventArgs args)

{
if (args == null || args.NewValue == null)
{
return;
}
TextBox textBox = (TextBox)d;
var propertyErrors = (ReadOnlyCollection<string>)args.NewValue;
Style textBoxStyle = (propertyErrors.Count() > @) ? (Style)Application.Current
.Resources["HighlightTextStyle"] : null;
textBox.Style = textBoxStyle;
}

The OnPropertyErrorsChanged method gets the instance of the TextBox that the PropertyErrors
dependency property is attached to, and gets any validation errors forthe TextBox. Then, if
validation errors are present the HighlightTextStyleis applied to the TextBox, so thatit is
highlighted with ared BorderBrush.

The Ul also displays validation error messages belowthe Submit buttoninan ItemsControl. This
ItemsControl binds to the AllErrors property of the UserinfoViewModel class. The
UserIinfoViewModel constructor subscribes to the ErrorsChanged event of the Userinfo class, which
is provided by the ValidatableBindableBase class. When this eventisraised, the OnErrorsChanged
handlerupdates the AllErrors property with the list of validation error strings from the dictionary

http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701833.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.border.borderbrush.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx

193

returned by the call to the GetAllErrors method on the Userinfoinstance, as shown in the following
code example.

Ci#: ValidationQuickstart\ViewModels\UserInfoViewModel.cs

private void OnErrorsChanged(object sender, DataErrorsChangedEventArgs e)

{
AllErrors = new ReadOnlyCollection<string>(_userInfo.GetAllErrors()

.Values.SelectMany(c => c).TolList());

194

Event aggregation Quickstart for Windows Store apps

Summary

e Defineapub/subeventby creatingan empty class that derives fromthe
PubSubEvent<TPayload> class.

e Notifysubscribers by retrieving the pub/sub event from the event aggregatorand callingits
Publish method.

e Registertoreceive notifications by using one of the Subscribe method overloads available in
the PubSubEvent<TPayload> class.

This Quickstart demonstrates event aggregation using Prism for the Windows Runtime. Event
aggregation allows communication between loosely coupled componentsinanapp, removingthe

need for componentsto have a reference to each other.

You will learn

e How to define apub/subevent.
e How to notify subscribers by retrievinga pub/sub event from the event aggregator.
e How to registertoreceive notifications forapub/sub event.

Applies to

e WindowsRuntime for Windows 8
e CH
e Extensible Application Markup Language (XAML)

The Quickstart contains a publisherand several subscribers that communicate using an instance of
the Microsoft.Practices.Prism.PubSubEvents library's PubSubEvent<TPayload> class. Thisinstance is
managed by an EventAggregator object.

In this Quickstart, the lifetimes of publishers and subscribers are independent because the objects
are not connected by objectreferences. There are also notype dependencies between publishers
and subscribers—publisher and subscriber classes can be packagedin unrelated assembilies.
Nonetheless, whenthe publisherinvokes the PubSubEvent<TPayload> class's Publish method, the
systemwill run all actions that have been registered by the PubSubEvent<TPayload> class's
Subscribe method. Subscribers can control how the actions run. The Quickstart shows the following
options:

e Theactionisinvokedsynchronouslyinthe same thread as the Publish thread.
e Theactionisscheduledtoruninthe backgroundona thread-pool thread.
e Theaction isdispatchedtothe app's Ul thread.

Subscriptionsinthis Quickstart use weak references. Registering a subscription action does notadd a
reference to the subscriber.

195

Building and running the Quickstart

Build the Quickstart as you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.
Afteryou build the project, you must deploy it. On the menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.
3. Afteryoudeploythe project, pick the Quickstarttile torunthe app. Alternatively, from
Visual Studio, on the menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similartothe one showninthe following diagram.

Ul Thread 1D: 3

Subscriber

Publisher

ltems in Cart: 1

Add Item to Cart (Ul Thread) Add Background Subscriber
Add Item to Cart (Background Thread) GC Background Subscriber

Panelsrepresent the PublisherViewModel and SubscriberViewModel classes. Inthe left panel are
two buttons that allow you to add items to a shopping cart, from the Ul thread and from a
backgroundthread. Selecting either button causes the PublisherViewModel class to add an item to
the shopping cart and invoke the Publish method of the ShoppingCartChangedEvent class that
derives from the PubSubEvent<TPayload> class. The SubscriberViewModel class has two
subscriptions tothis event, in orderto update the count of the number of itemsin the shoppingcart,
and to display awarning message once there are more than 10 itemsin the shoppingcart.

On the right of the page there's a button for adding a background subscriberto the
ShoppingCartChangedEvent. If this buttonis selected, a message dialogis shown from the
background subscriber wheneverthe ShoppingCartChangedEventis published. There's also abutton
that forces the background subscriberto be garbage collected. No special cleanedisrequired —the
background subscriberdid not need to call the ShoppingCartChangedEvent class's Unsubscribe
method.

For more info about event aggregation, see Communicating between loosely coupled components.

196

Solution structure

The EventAggregatorQuickstart Visual Studio solution contains three projects:
EventAggregatorQuickstart, Microsoft.Practices.Prism.PubSubEvents, and
Microsoft.Practices.Prism.StoreApps. The EventAggregatorQuickstart project uses Visual Studio
solution foldersto organize the source code into these logical categories:

o The Assets folder containsthe splash screen and logoimages.

¢ The Common folder containsthe stylesresource dictionary usedinthe app.

e The Events folder contains the ShoppingCartChangedEvent class.

e The Modelsfoldercontainsthe two model classes usedinthe app.

e The ViewModels folder contains the view model classes that are exposed to the views.
e The Viewsfoldercontainsthe views that make up the Ul for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.
The Microsoft.Practices.Prism.PubSubEvents projectis aPortable Class Library (PCL) thatimplements
eventaggregation. Formore info about portal class libraries, see Cross-Platform Development with
the .NET Framework. This project has no dependencies on any other projects, and can be added to
your own Visual Studio solution without the Microsoft.Practices.Prism.Store Apps library. For more
infoaboutthese libraries, see Prism forthe Windows Runtime reference. With little orno

modification, you can reuse many of the classes from this Quickstartin anotherapp. You can also
adapt the organization andideas that this Quickstart provides.

Key classes in the Quickstart

The EventAggregator classis responsible forlocating or building events and for managing the
collection of eventsinthe system. Inthis Quickstart, aninstance of the EventAggregatorclass is
createdinthe OnLaunched methodinthe App class. The EventAggregatorinstance must be created
on the Ul thread in orderfor Ul thread dispatching to work. Thisinstance isthen passed into the
view model classes through constructorinjection. Thisis shown in the following code examples.

Cit: EventAggregatorQuickstart\Bootstrapper.cs

public void Bootstrap(INavigationService navService)
{
// Create the singleton EventAggregator so it can be dependency injected down
// to the view models who need it
_eventAggregator = new EventAggregator();
ViewModellLocator.Register(typeof(MainPage) .ToString(),
() => new MainPageViewModel(_eventAggregator));

http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx

197

The app has a singletoninstance of the EventAggregator class thatis created on the Ul thread.

Ci#: EventAggregatorQuickstart\ViewModels\MainPageViewModel.cs

public MainPageViewModel(IEventAggregator eventAggregator)
{

// Pass the injected event aggregator singleton down to children since there
is no container to do the dependency injection

SubscriberViewModel = new SubscriberViewModel (eventAggregator);

PublisherViewModel = new PublisherViewModel(eventAggregator);

View models, such as the MainPageViewModel, take the event aggregatorobjectas a constructor
parameterand pass this object to any of their child objects that need to use event aggregation. In
the code example, the MainPageViewModel passes the event aggregatortothe
SubscriberViewModel and PublisherViewModel instances thatit contains.

The PubSubEvent<TPayload> class connects event publishers and subscribers, andis the base class
for an app's specificevents. TPayloadis the type of the event's payload, andis the argument that
will be passed tosubscribers whenan eventis published. Compile-time checking helps publishers
and subscribers provide successful event connection.

The following diagram shows a conceptual view of how event aggregation is used in this Quickstart.

P -

ShoppingCartChangedEvent

T N

publishes subscribes invakes invokes
. . ™y g . . ™ I . T
PublisherViewModel SubscriberViewModel | BackgroundSubscriber
| PublishonuiThread | | HandleshoppingCartupdate | HandleShoppingCartChanged
hS A
PublishOnBackgroundThread | | HandleShoppingCartUpdateFiltered |
L . 4 A A

Defining the ShoppingCartChangedEvent class

The ShoppingCartChangedEvent class's Publish method isinvoked when the useradds anitemto
the shopping cart. This class, which derives from the PubSubEvent<TPayload> class, is used to
communicate betweenthe loosely coupled PublisherViewModel and SubscriberViewModel classes.
The following code example shows how the ShoppingCartChangedEvent is defined, specifying
ShoppingCart as the payload type.

C#: EventAggregatorQuickstart\Events\ShoppingCartChangedEvent.cs

public class ShoppingCartChangedEvent : PubSubEvent<ShoppingCart> { }

198

Notifying subscribers of the ShoppingCartChangedEvent

Users can add an item to the shoppingcartfrom both the Ul thread and from a background thread.
Whenan itemisadded to the shopping cart the PublisherViewModel class calls the
ShoppingCartChangedEvent’s Publish method in orderto alert subscribers of the change tothe
shopping cart. The following code example shows how the subscribers are notified.

C#: EventAggregatorQuickstart\ViewModels\PublisherViewModel.cs

private void PublishOnUIThread()

{
AddItemToCart();
// Fire the event on the UI thread
_eventAggregator.GetEvent<ShoppingCartChangedEvent> ().Publish(_cart);
}
private void PublishOnBackgroundThread()
{
AddItemToCart();
Task.Factory.StartNew(() =>
{
// Fire the event on a background thread
_eventAggregator.GetEvent<ShoppingCartChangedEvent>().Publish(_cart);
Debug.WritelLine(String.Format("Publishing from thread: {0}",
Environment. CurrentManagedThreadId));
}s
}
private void AddItemToCart()
{
var item = new ShoppingCartItem("Widget", 19.99m);
_cart.AddItem(item);
}

Publishing can occur from any thread. The EventAggregator and PubSubEvent<TPayload> classes
are thread safe. The Quickstart shows this by notifying subscribers from both the Ul threadand a
backgroundthread.

Note Ifyou access objectsfrom more than one thread you must ensure that you appropriately
serialize reads and writes. Forexample, the ShoppingCart class in this Quickstartis a thread safe
class.

The PublishOnUIThread and PublishOnBackgroundThread methods add an item to the shopping
cart by creatingand initializing an instance of the ShoppingCartitem class. Then, the
ShoppingCartChangedEventis retrieved from the EventAggregator class and the Publish method is
invoked onit. This supplies the ShoppingCartinstance as the ShoppingCartChangedEvent event's
parameter. The EventAggregator class's GetEvent method constructs the eventifit has not already
been constructed.

199

Registering to receive notifications of the ShoppingCartChangedEvent

Subscribers canregister actions with a PubSubEvent<TPayload> instance using one of its Subscribe
method overloads. The SubscriberViewModel class subscribes to the ShoppingCartChangedEvent
on the Ul thread, regardless of which thread published the event. The subscriberindicates this
during subscription by specifying a ThreadOption.UIThread value, as shown in the following code
example.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

// Subscribe indicating this handler should always be called on the UI Thread

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()
.Subscribe(HandleShoppingCartUpdate, ThreadOption.UIThread);

// Subscribe indicating that this handler should always be called on UI thread,

// but only if more than 10 items in cart

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()
.Subscribe(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread, false,

IsCartCountPossiblyTooHigh);

Subscribers provide an action with asignature that matches the payload of the pub/sub event. For
example, the HandleShoppingCartUpdate method takes a ShoppingCart parameter. The method
updatesthe numberof itemsthatare inthe shopping cart.

A second subscription is made to the ShoppingCartChangedEvent using afilter expression. The filter
expression defines a condition that the payload must meetforbefore the action will be invoked. In
this case, the conditionis satisfied if there are more than 10 itemsin the shopping cart. The
HandleShoppingCartUpdateFiltered method shows awarning message tothe user, indicating that
they have more than 10 itemsin theirshoppingcart.

Note For Ul thread dispatchingtowork, the EventAggregator class must be created onthe Ul
thread. This allows it to capture and store the SynchronizationContext thatis used to dispatch to the
Ul thread forsubscribers that use the ThreadOption.UIThread value. If you want to use dispatching
on the Ul thread, you must make sure that you instantiate the EventAggregator classinyourapp's

Ul thread.

The PubSubEvent<TPayload> class, by default, maintains aweak delegatereference tothe
subscriber'sregistered action and any filter. This means that the reference that the
PubSubEvent<TPayload> class holds onto will not prevent garbage collection of the subscriber.
Usinga weak delegate reference relieves the subscriberfrom the need to unsubscribe fromthe
event. The garbage collector will dispose the subscriberinstance when there are noreferencestoit.

Note Lambdaexpressions that capture the this reference cannot be used as weak references. You
should use instance methods as the Subscribe method's action and filter parametersif you wantto
take advantage of the PubSubEvent<TPayload>class's weak reference feature.

When the Add Background Subscriber buttonis selected the AddBackgroundSubscriber method is
invoked. This method creates a background subscriber and holds onto the reference to the

http://msdn.microsoft.com/en-us/library/windows/apps/system.threading.synchronizationcontext.aspx

200

subscribing objectin orderto preventitfrom being garbage collected. The method also subscribes
using the HandleShoppingCartChanged method as the subscribed action. After the subscriptionis
established, any call to the ShoppingCartChangedEvent'sPublish method will synchronously invoke
the HandleShoppingCartChanged method that displays a message dialogthatinformsthe userthat
the shoppingcart has been updated. The messages gives the numerical thread ID of the calling
thread. You can use thisto see that the expected thread was used for the action, dependingon
which buttonyouusedto add the shopping cartitem.

Cit: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

private void AddBackgroundSubscriber()

{

if (_subscriber != null) return;

// Create subscriber and hold on to it so it does not get garbage collected

_subscriber = new BackgroundSubscriber(Window.Current.Dispatcher);

// Subscribe with defaults, pointing to subscriber method that

// pops a message box when the event fires

_eventAggregator.GetEvent<ShoppingCartChangedEvent> ()
.Subscribe(_subscriber.HandleShoppingCartChanged);

When the GC Background Subscriber buttonis selected the GCBackgroundSubscriber method is
invoked. This methodreleases the referenceto the background subscriberand forces the garbage
collectortorun. This garbage collects the background subscriber. The registered action will then no
longerbe invoked by the Publish method.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

private void GCBackgroundSubscriber()
{
// Release and GC, showing that we don't have to unsubscribe to keep the
// subscriber from being garbage collected
_subscriber = null;
GC.Collect();

201

Bootstrapping an MVVM Windows Store app Quickstart using Prism
for the Windows Runtime

Summary

e Bootstrap your Windows Store app by deriving your App class from the MvvmAppBase
class, and provide app specificstartup behaviorin your App class to supplementthe core
startup behavior of the MvvmAppBase class.

e Use adependencyinjection containerto abstract dependencies between objects, and
automatically generatedependent objectinstances.

e Limitview modelinstantiationtoasingle class by usinga view model locator object.

This Quickstart demonstrates how to bootstrap a Windows Store app that uses the Model-View-
ViewModel (MVVM) pattern. The Quickstart uses Prism for the Windows Runtime, which provides
MVVM support with lifecycle managementand core services toa Windows Store app.

You will learn

e How to bootstrapa Windows Store app that uses the MVVM pattern.

Applies to

e Windows Runtime for Windows 8
e CH
e Extensible Application Markup Language (XAML)

This Quickstart uses the Unity containerfor dependency resolution and construction during the
bootstrapping process. However, you are not required to use Unity, or any otherdependency
injection container, when bootstrappingan MVVMWindows Store app. To understand how to
perform bootstrapping without using adependency injection container, see Bootstrapping withouta
dependencyinjection container.

Building and running the Quickstart
Build the HelloWorldWithContainer Quickstart as you would a standard project:

1. Onthe Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. Afteryoubuildthe project, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you runthe app fromthe debugger.

3. Afteryoudeploythe project, pick the Quickstarttile torunthe app. Alternatively, from
Visual Studio, onthe menu bar, choose Debug > Start Debugging.

When the app runs you will see the page showninthe following diagram.

http://go.microsoft.com/fwlink/p/?LinkID=290899

202

Hello World (with Container)!

Features

Application structuring with MVWM and dependencies

Fage navigation with participation and nawi n commanding
Application state management through suspend, terminate, and resume
User input validation on client and se e with validation error displays

y coupled communications with Commands and Pub/Sub events

Mavigate To User Input Page

The page lists some of the architectural features of Prism, and has a Button that allows you to
navigate toa second page. Selecting the Navigate To User Input Page button will take you tothe
second page of the app, as showninthe following diagram.

Hello World (with Container)!

User input retained in view m

User input retained in repositery: _

This page allows youto enterdata into two TextBox controls. If you suspend the app on this page
any data will be serialized to disk, and when the app resumes the datawill be deserialized and
displayedinthe TextBox controls. Thisis accomplished by using the RestorableState attributefor
the data retained in the view model, and the SessionStateService class forthe dataretainedinthe
repository. For more info about the SessionStateService class and the RestorableState attribute see
Handling suspend, resume, and activation.

Solution structure

The HelloWorldWithContainer Visual Studio solution contains two projects:
HelloWorldWithContainer, and Microsoft.Practices.Prism.StoreApps. The HelloWorldWithContainer
projectuses Visual Studio solution folders to organize the source code into these logical categories:

e The Assets folder containsthe splash screenand logoimages.
e The Common foldercontains the styles resource dictionary used inthe app.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

203

e The Servicesfoldercontainsthe IDataRepositoryinterface anditsimplementing class.
¢ The ViewModels folder contains the view model classes that are exposed to the views.
e The Viewsfoldercontainsthe views that make up the Ul for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.

For more infoaboutthislibrary, see Prism forthe Windows Runtime reference. With little or no
modification, you can reuse many of the classesfrom this Quickstartinanotherapp. You can also
adapt the organization and ideas that this Quickstart provides.

Key classes in the Quickstart

The MvvmAppBase class provides core startup behaviorforan MVVM app, with its constructor
beingthe entry pointforthe app. The App class adds app specificstartup behaviorto the app.

There are twoview classesinthe app, MainPage and UserlnputPage that bind to the
MainPageViewModeland UserlnputPageViewModel classes respectively. Each view class derives
fromthe VisualStateAwarePage class, provided by the Microsoft.Practices.Prism.StoreApps library,

that provides view management and navigation support. Each view model class derives from the
ViewModel base class, provided by the Microsoft.Practices.Prism.StoreApps library, that provides
support for navigation and suspend/resume functionality. A static ViewModelLocator object,
provided by the Microsoft.Practices.Prism.StoreApps library, is used to manage the instantiation of
view models andtheirassociation to views. This approach has the advantage that the app has a
single class thatisresponsible forthe location and instantiation of view model classes. For more info
about how the ViewModelLocator object manages the instantiation of view models and their
associationtoviews, see Using the MVVM pattern.

Bootstrapping an MVVM app using the MvvmAppBase class

The MvvmAppBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is responsible
for providing core startup behaviorforan MVVM app, and derives from the Application class. The
MvvmAppBase class constructoris the entry pointforthe app. The following diagram shows a

conceptual view of how app startup occurs.

MyvmAppBase App MvvmappBase App
Constructor Constructor OnwindowCreated ™ Onlnitialize
l App MvvmAppBase App
InitializeComponent OnLaunched OnLaunchApplication
MwvvmappBase
InitializeFramefsync

MwvmappBase

CreateNavigationService —*

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

204

The MvvmAppBase class helps bootstrap Windows Store apps with suspension, navigation, and
otherservices.

In orderto bootstrap an app usingthe MvvmAppBase class, the App class mustderive fromthe
MvvmAppBase class, as shownin the following code examples.

XAML: HelloWorldWithContainer\App.xaml

<Infrastructure:MvvmAppBase

xmlns:Infrastructure="using:Microsoft.Practices.Prism.StoreApps">
<Application.Resources>

</Application.Resources>
</Infrastructure:MvvmAppBase>

C#: HelloWorldWithContainer\App.xaml.cs

sealed partial class App : MvvmAppBase

Adding app specific startup behavior to the App class

When deriving from the MvvmAppBase class, app specificstartup behavior can be added to the App
class. A required overridein the App class is the OnLaunchApplication method from where you will
typically performyourinitial navigation to alaunch page, or to the appropriate page basedona
search, sharing, or secondarytile launch of the app. The following code example shows the
OnlaunchApplication method inthe App class.

C#: HelloWorldWithContainer\App.xaml.cs

public override OnLaunchApplication(LaunchActivatedEventArgs args)

{

NavigationService.Navigate("Main", null);

}

This method navigates to the MainPage in the app, when the app launches. "Main" is specified as
the logical name of the view that will be navigated to. The default convention specified in the
MvvmAppBase class isto append "Page" to the name and look forthat pagein a .Views child
namespace inthe project. Alternatively, another convention can be specified by overriding the
GetPageType methodinthe MvvmAppBase class.

The app usesthe Unity dependency injection containerto reduce the dependency coupling between
objects by providing afacility to instantiate instances of classes and manage their lifetime based on
the configuration of the container. Aninstance of the containeris created as a singletoninthe App
class, as showninthe following code example.

http://go.microsoft.com/fwlink/p/?LinkID=290899

205

C#: HelloWorldWithContainer\App.xaml.cs

IUnityContainer _container = new UnityContainer();

If you require app specificinitialization behavior you should override the Onlnitialize method in the
App class. For instance, this method should be overridden if you need toinitialize services, orseta
defaultfactory ordefaultview model resolverforthe ViewModelLocator object. The following code
example shows the Onlnitialize method.

C#: HelloWorldWithContainer\App.xaml.cs

protected override void OnInitialize(IActivatedEventArgs args)

{

// Register MvvmAppBase services with the container so that view models can
// take dependencies on them
_container.RegisterInstance<ISessionStateService>(SessionStateService);
_container.RegisterInstance<INavigationService>(NavigationService);

// Register any app specific types with the container
_container.RegisterType<IDataRepository, DataRepository>();

// Set a factory for the ViewModellLocator to use the container to construct
// view models so their
// dependencies get injected by the container
ViewModelLocator.SetDefaultViewModelFactory((viewModelType)

=> _container.Resolve(viewModelType));

This method registers the SessionStateService and NavigationService instances from the
MvvmAppBase class with the containeras singletons, based on their respective interfaces, so that
the view model classes can take dependencies on them. The DataRepository class is then registered
with the container, based onitsinterface. The DataRepository class provides datafor display on the
MainPage, and methods for reading and writing datainput from one of the TextBox controls on the
UserlnputPage. The Onlinitialize method then sets the default view model factory forthe
ViewModelLocator object so that it uses the containerto construct view model instances whose
dependencies are injected by the container.

In this Quickstart the ViewModelLocator object uses a convention-based approach to locate and
instantiate viewmodels from views. This convention assumes that view models are in the same
assembly asthe view types, that view models are ina .ViewModels child namespace, that views are
ina .Views child namespace, and that view model names correspond with viewnames and end with
"ViewModel". The ViewModellLocator class has an attached property, AutoWireViewModel, thatis
used to manage the instantiation of view models and theirassociation toviews. In the view's XAML
this attached propertyis setto true to indicate that the view model class should be automatically
instantiated fromthe view class.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

206

XAML: HelloWorldWithContainer\Views\MainPage.xaml

Infrastructure:ViewModellLocator.AutoWireViewModel="true"

The AutoWireViewModel propertyisadependency property thatisinitialized to false, and when its
value changesthe AutoWireViewModelChanged event handlerin the ViewModellLocator classis
calledtoresolve the view modelforthe view. The following code example shows how this is
achieved.

C#: Microsoft.Practices.Prism.StoreApps\ViewModelLocator.cs

private static void AutoWireViewModelChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{
FrameworkElement view = d as FrameworkElement;
if (view == null) return; // Incorrect hookup, do no harm

// Try mappings first

object viewModel = GetViewModelForView(view);
// Fallback to convention based

if (viewModel == null)

{

var viewModelType =
defaultViewTypeToViewModelTypeResolver(view.GetType());
if (viewModelType == null) return;

// Really need Container or Factories here to deal with injecting
// dependencies on construction
viewModel = defaultViewModelFactory(viewModelType);

}

view.DataContext = viewModel;

The AutoWireViewModelChanged method first attempts to resolve the view model based on
mappingsthatare not presentin this Quickstart. If the view model cannot be resolved using this
approach, for instance if the mapping wasn't registered, the method falls back to using the
convention-based approach outlined earlier to resolve the correct view model type. The view model
factory, set by the Onlnitialize method in the App class, uses the dependency injection containerto
construct view model instances whose dependencies are injected by the container. When the view
model instances are constructed, dependencies specified by the constructor parameters are
resolved by the containerand then passedintothe view model. Thisisreferred to as constructor
injection. This approach removes the need foran object to locate its dependencies or manage their
lifetimes, allows swapping of implemented dependencies without affecting the object, and facilitates
testability by allowing dependencies to be mocked. Finally, the method sets the DataContext
property of the view type to the registered view model instance.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

207

Bootstrapping without a dependency injection container

You are notrequiredto use Unity, or any other dependency injection container, when bootstrapping
Windows Store apps. The HelloWorld Quickstart demonstrates how to bootstrap a Windows Store
app that usesthe MVVM pattern by registering factory methods against view types, withaview
model locator object.

As previously mentioned, if you require app specificinitialization behavior you should override the
Onlnitialize method in the App class. For instance, this method should be overriddenif you need to
initialize services, orseta defaultfactory or default viewmodel resolver for the ViewModelLocator
object. The following code example shows the Onlnitialize method.

C#: HelloWorld\App.xaml.cs

protected override void OnInitialize(IActivatedEventArgs args)

{
// New up the singleton data repository, and pass it the state service it
// depends on from the base class
_dataRepository = new DataRepository(SessionStateService);
// Register factory methods for the ViewModellLocator for each view model that
// takes dependencies so that you can pass in the dependent services from the
// factory method here.
ViewModellLocator.Register(typeof(MainPage).ToString(),
() => new MainPageViewModel(_dataRepository, NavigationService));
ViewModelLocator.Register(typeof(UserInputPage).ToString(),
() => new UserInputPageViewModel (_dataRepository, NavigationService));
}

This method creates a singleton from the DataRepository class, passingin the SessionStateService
fromthe MvvmAppBase class. The DataRepository class provides datafordisplay onthe MainPage,
and methods forreading and writing datainput from one of the TextBox controls onthe
UserlnputPage. The Onlinitialize method also registers afactory method foreach view type with the
staticViewModelLocator object. This ensures that the ViewModelLocator object instantiates the
correct view model object fora view type, passingin dependent services to the view model
constructorfrom the factory method.

http://go.microsoft.com/fwlink/p/?LinkID=290899
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

208

Prism for the Windows Runtime reference (Windows Store business
apps using C#,XAML, and Prism)

Summary

e Use the Microsoft.Practices.Prism.StoreApps library to add MVVM support with lifecycle
management, and core services to your Windows Store app.

e Use the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely
coupled componentsinyourapp.

Prism forthe Windows Runtime provides two libraries that help developers create managed
Windows Store apps. The libraries accelerate the development of Windows Store apps by using
proven design patterns such as the Model-View-ViewModel (MVVM) pattern and the event
aggregation pattern. The Microsoft.Practices.Prism.StoreApps library provides support for
bootstrapping MVVMapps, state management, validation of userinput, navigation, data binding,
commands, Flyouts, settings, and search. The Microsoft.Practices.Prism.PubSubEvents library allows
communication between loosely coupled componentsinan app, thus helpingto reduce
dependencies between assemblies in a Microsoft Visual Studio solution.

You will learn

e Abouttheclassesandinterfaces containedinthe Microsoft.Practices.Prism.StoreApps

library.
e Aboutthe classesandinterfaces containedinthe Microsoft.Practices.Prism.PubSubEvents
library.
Applies to

e Windows Runtime for Windows 8
o« CH#
¢ Extensible Application Markup Language (XAML)

Prism helps developers create managed Windows Store apps. It accelerates development by
providing supportfor MVVM, loosely coupled communication, and the core services requiredin
Windows Store apps. Itis designed to help developers create apps that need to accomplish the
following:

e Addressthe common Windows Store app development scenarios.

e Buildappscomposed of independent, yet cooperating, pieces.

e Separate the concerns of presentation, presentation logic, and model through support for
Model-View-ViewModel (MVVM).

e Use an architectural infrastructure to produce a consistent and high quality app.

Both librariesin Prism ship as source, with the Microsoft.Practices.Prism.PubSubEvents library also
shippingas a signed binary.

http://go.microsoft.com/fwlink/?LinkID=296753
http://go.microsoft.com/fwlink/?LinkID=296753
http://go.microsoft.com/fwlink/?LinkID=296753
http://go.microsoft.com/fwlink/?LinkID=296753

209

Microsoft.Practices.Prism.StoreApps library

The Microsoft.Practices.Prism.StoreApps library is aclass library that provides MVVMsupport with

lifecycle management, and core services to a Windows Store app.

The followingtable lists the classes contained inthe Microsoft.Practices.Prism.StoreApps library:

Class

Description

AppManifestHelper

BindableBase

BindableValidator

Constants

DelegateCommand

DelegateCommand<T>

DelegateCommandBase

HyoutService

HyoutView

FrameFacadeAdapter

FrameNavigationService

MvvmAppBase

MvvmNavigatedEventArgs

ResourcelLoaderAdapter

RestorableStateAttribute

SearchPaneService

SearchQueryArguments

Loads the package manifestand allows you to retrieve the applicationid, and
check if the app uses the Search contract. This class can be extended to retrieve
other app manifestvalues thatare not exposed by the API.

Implementation ofthe INotifyPropertyChanged interface, to simplifyview model
and model class propertychange notification.

Validates entity property values againstentity-defined validation rules and
exposes, through anindexer, a collection of errors for properties thatdid not
pass validation.

An internal class thatcontains constants used bythe library.

An |Command implementation whose delegates do nottake any parameters for
Execute() and CanExecute().

An ICommand implementation whose delegates can be attached for Execute(T)
and CanExecute(T).

The base ICommand implementation whose delegates can be attached for
Execute(Object) and CanExecute(Object).

A service class thatimplements the IFlyoutService interface to displayFlyouts
that derive from the FlyoutView class.

A base class forviews that will be displayed as Flyouts.

A facade and adapter class thatimplements the IFrameFacade interface to
abstractthe Frame object.

A service class thatimplements the INavigationService interface to navigate
through the pages ofan app.

Helps to bootstrap Windows Store apps that use the MVWM pattern, with
services provided by the Microsoft.Practices.Prism.StoreApps library.

Provides data for navigation methods and event handlers thatcannotcancel a
navigation request.

An adapter class thatimplements the IResourceLoader interface to adaptthe
ResourcelLoader object.

Defines an attribute that indicates thatany marked propertywill save its state on
suspension, provided thatthe marked property is in an instance of a class that
derives from the ViewModel class.

A service class thatimplementsthe ISearchPaneService interface to abstractthe
SearchPane object.

Abstracts the SearchPaneQuerySubmittedEventArgs and the
SearchActivatedEventArgs objects in order to provide one event handler that
handles the search activation events for both when the app is running and when

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpanequerysubmittedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.searchactivatedeventargs.aspx

210

itis not.

SessionStateService A service class thatimplements the ISessionStateService interface to capture
global session state in orderto simplifyprocess lifetime managementforan app.

SettingsCharmActionltem Defines anitem that is used to populate the Settings pane. Each item has an
associated Action that will be executed when the item is selected in the Settings
pane.

StandardHyoutSize A static class thatdefines the widths of narrow and wide Flyouts.

ValidatableBindableBase Implements the IValidatableBindableBase interface to validate model property

values againsttheir validation rules and return any validation errors .

ViewModel The base view model classthatimplements the INavigationAware interface to
provide navigation supportand state managementto derived view model
classes.

ViewModelLocator Locates the view model class for views that have the AutoWireViewModel

attached property setto true.

VisualStateAwarePage The base view class for pages thatneed to be aware of layout changes and
update their visual state accordingly.

The followingtable lists the interfaces contained in the Microsoft.Practices.Prism.StoreApps library:

Interface Description

ICredentialStore Defines an interface for the RoamingCredentialStore class thatabstracts the
PasswordVault objectfor managing user credentials.

IHyoutService Defines an interface that can be usedto implementa service for displaying
Flyouts.

IHyoutViewModel Defines an interface that should be implemented by Flyout view model classes to
provide actions for opening and closing a Flyout, and navigation away from the
Flyout.

IFFameFacade Defines an interface for the FrameFacadeAdapter class thatabstracts the Frame

objectfor use by apps that derive from the MwmAppBase class.

INavigationAware Defines an interface that allows an implementing class to participate in a
navigation operation.

INavigationService Defines an interface that allows animplementing classto create a navigation
service.
IResourcelLoader Defines an interface for the ResourceLoaderAdapter class thatabstracts the

Resourceloader objectforuse by apps thatderive from the MwmAppBase class.

ISearchPaneService Defines an interface for the SearchPaneService class thatabstracts the
SearchPane objectfor use by apps that derive from the MwmAppBase class.

ISessionStateService Defines an interface that allows animplementing class to capture global session
state.

IValidatableBindableBase Defines aninterface that allows animplementing class to add validation supportto
model classesthatcontain validation rules.

Forinfoabouthow thislibrary was usedin the AdventureWorks Shopper reference implementation,
see Using the Model-View-ViewModel (MVVM) pattern, Creating and navigating between pages,

http://msdn.microsoft.com/en-us/library/windows/apps/system.action.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.aspx

211

Validating userinput, Managing application data, Handling suspend, resume, and activation,

Communicating between looselycoupled components, and Implementing search.

Microsoft.Practices.Prism.PubSubEvents library

The Microsoft.Practices.Prism.PubSubEvents library is a Portable Class Library (PCL) that contains
classesthatimplement event aggregation. You can use this library for communicating between
loosely coupled componentsinyourownapp. The library has nodependencies on otherlibraries,

and can be added to your Visual Studio solution without the Microsoft.Practices.Prism.Store Apps
library. The PCL targets:

e Microsoft.NET for Windows Store apps
.NET Framework 4 and higher
Microsoft Silverlight 4and higher
Windows Phone 7and higher

Xbox 360

For more info about portal class libraries, see Cross-Platform Development with the .NET Framework

The followingtable lists the classes contained inthe Microsoft.Practices.Prism.PubSubEvents library:

Class Description

BackgroundEventSubscription<TPayload> Extends EventSubscription<TPayload> to invoke the Action
delegate in a background thread.

BackgroundEventSubscription<TPayload> Extends EventSubscription<TPayload> to invoke the Action
delegate in a background thread.

DelegateReference Represents areference to a Delegate that may contain a
WeakReference to the target. This class is used internally.

DispatcherEventSubscription<TPayload> Extends EventSubscription<TPayload> to invoke the Action
delegate in a specific Dispatcher.

EventAggregator Implements IEventAggregator.
EventBase Defines abase class to publish and subscribe to events.
EventSubscription<TPayload> Provides a way to retrieve a Delegate to execute an action

depending on the value of a second filter predicate that returns
true if the action should execute.

PubSubEvent<TPayload> Defines aclass thatmanages publication and subscription to
events.

SubscriptionToken Subscription token returned from EventBase on subscribe.

http://go.microsoft.com/fwlink/?LinkID=296753
http://go.microsoft.com/fwlink/?LinkID=296754
http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx
http://go.microsoft.com/fwlink/?LinkID=296753
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.weakreference.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.threading.dispatcher.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx

212

The followingtable lists the interfaces contained in the Microsoft.Practices.Prism.PubSubEvents

library:

Interface Description

IDelegateReference Represents areference to a Delegate.

IEventAggregator Defines an interface to getinstances ofan event type.
IEventSubscription Defines a contract for an event subscription to be used by EventBase.

The followingtable lists the enumerations contained in the Microsoft.Practices.Prism.PubSubEvents

library:

Enumeration Description

ThreadOption Specifies on which thread a PubSubEvent<TPayload> subscriber will be called.

Forinfoaboutpublishingand subscribing to events, see Communicating between loosely coupled

components and Event aggregation Quickstart.

http://go.microsoft.com/fwlink/?LinkID=296753
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx
http://go.microsoft.com/fwlink/?LinkID=296753

	Developing a business app for the Windows Store using C#: AdventureWorks Shopper
	Download
	Prerequisites
	Table of contents at a glance
	Learning resources

	Getting started with AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	Download
	Building and running the sample
	Projects and solution folders
	The AdventureWorks.Shopper project
	The AdventureWorks.UILogic project
	The AdventureWorks.WebServices project
	The Microsoft.Practices.Prism.PubSubEvents project
	The Microsoft.Practices.Prism.StoreApps project

	Guidance summary for AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	Applies to
	Making key decisions
	Designing the AdventureWorks Shopper user experience
	Using the Model-View-ViewModel (MVVM) pattern in AdventureWorks Shopper
	Creating and navigating between pages in AdventureWorks Shopper
	Using touch in AdventureWorks Shopper
	Validating user input in AdventureWorks Shopper
	Managing application data in AdventureWorks Shopper
	Handling suspend, resume, and activation in AdventureWorks Shopper
	Communicating between loosely coupled components in AdventureWorks Shopper
	Working with tiles in AdventureWorks Shopper
	Implementing search in AdventureWorks Shopper
	Improving performance in AdventureWorks Shopper
	Testing and deploying AdventureWorks Shopper

	Using Prism for the Windows Runtime (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Getting started
	Creating a view
	Creating a view model class
	Creating a model class with validation support
	Creating a Flyout and showing it programmatically
	Adding items to the Settings pane
	Changing the convention for naming and locating views
	Changing the convention for naming, locating, and associating view models with views
	Registering a view model factory with views instead of using a dependency injection container

	Designing the AdventureWorks Shopper user experience (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	AdventureWorks Shopper user experiences
	Deciding the user experience goals
	Deciding the app flow
	Deciding what Windows 8 features to use
	Fundamentals
	Page design
	Snapping and scaling
	Touch interaction
	Capabilities
	Tiles and notifications
	Data
	Deciding how to monetize the app
	Making a good first impression
	Validating the design

	Using the Model-View-ViewModel (MVVM) pattern in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	MVVM in AdventureWorks Shopper
	What is MVVM?
	Using a dependency injection container
	Bootstrapping an MVVM app using the MvvmAppBase class
	Using the ViewModelLocator class to connect view models to views
	Using a convention-based approach

	Other approaches to connect view models to views
	Creating a view model declaratively
	Creating a view model programmatically
	Creating a view defined as a data template

	Data binding with the BindableBase class
	Additional considerations

	UI interaction using the DelegateCommand class and attached behaviors
	Implementing command objects
	Invoking commands from a view
	Implementing behaviors to supplement the functionality of XAML elements
	Invoking behaviors from a view

	Additional considerations
	Centralize data conversions in the view model or a conversion layer
	Expose operational modes in the view model
	Keep views and view models independent
	Use asynchronous programming techniques to keep the UI responsive

	Creating and navigating between pages in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Creating pages and navigating between them in AdventureWorks Shopper
	Creating pages
	Adding design time data
	Supporting portrait, snap, and fill layouts
	Loading the hub page at runtime
	Styling controls
	Overriding built-in controls
	Enabling page localization
	Separate resources for each locale
	Ensure that each piece of text that appears in the UI is defined by a string resource
	Add contextual comments to the app resource file
	Define the flow direction for all pages
	Ensure error messages are read from the resource file

	Enabling page accessibility
	Navigating between pages
	Handling navigation requests
	Invoking navigation

	Using touch in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Touch in AdventureWorks Shopper
	Tap for primary action
	Slide to pan
	Swipe to select, command, and move
	Pinch and stretch to zoom
	Swipe from edge for app commands
	Swipe from edge for system commands

	Validating user input in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Validation in AdventureWorks Shopper
	Specifying validation rules
	Triggering validation when properties change
	Triggering validation of all properties
	Triggering server-side validation
	Highlighting validation errors with attached behaviors
	Persisting user input and validation errors when the app suspends and resumes

	Managing application data in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Managing application data in AdventureWorks Shopper
	Storing data in the app data stores
	Local application data
	Roaming application data
	Storing and roaming user credentials
	Temporary application data

	Exposing settings through the Settings charm
	Using model classes as data transfer objects
	Accessing data through a web service
	Consumption
	Exposing data
	Data formats
	Consuming data
	Caching data
	Authentication

	Handling suspend, resume, and activation in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Suspend and resume in AdventureWorks Shopper
	Understanding possible execution states
	Implementation approaches for suspend and resume
	Suspending an app
	Resuming an app
	Activating an app
	Other ways to close the app

	Communicating between loosely coupled components in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Event aggregation in AdventureWorks Shopper
	Event aggregation
	Defining and publishing pub/sub events
	Defining an event
	Publishing an event

	Subscribing to events
	Default subscription
	Subscribing on the UI thread
	Subscription filtering
	Subscribing using strong references

	Unsubscribing from pub/sub events

	Working with tiles in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Tiles in AdventureWorks Shopper
	Creating app tiles
	Using periodic notifications to update tile content

	Creating secondary tiles
	Launching the app from a secondary tile

	Implementing search in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Search in AdventureWorks Shopper
	Participating in the Search contract
	Responding to search queries
	Populating the search results page with data
	Navigating to the result's detail page
	Enabling users to type into the search box

	Improving performance in AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Performance considerations
	Limit the startup time
	Emphasize responsiveness
	Trim resource dictionaries
	Optimize the element count
	Reuse identical brushes
	Use independent animations
	Minimize the communication between the app and the web service
	Limit the amount of data downloaded from the web service
	Use UI virtualization
	Avoid unnecessary termination
	Keep your app's memory usage low when it's suspended
	Reduce battery consumption
	Minimize the amount of resources that your app uses
	Limit the time spent in transition between managed and native code
	Reduce garbage collection time

	Additional considerations

	Testing and deploying AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Making key decisions
	Testing AdventureWorks Shopper
	Unit and integration testing
	Testing synchronous functionality
	Testing asynchronous functionality

	Suspend and resume testing
	Security testing
	Localization testing
	Accessibility testing
	Performance testing
	Device testing
	Testing your app with the Windows App Certification Kit
	Creating a Windows Store certification checklist
	Deploying and managing Windows Store apps

	Meet the AdventureWorks Shopper team (Windows Store business apps using C#, XAML, and Prism)
	Meet the team

	Quickstarts for AdventureWorks Shopper (Windows Store business apps using C#, XAML, and Prism)
	Validation Quickstart for Windows Store apps using the MVVM pattern
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Specifying validation rules
	Triggering validation explicitly
	Triggering validation implicitly on property change
	Highlighting validation errors

	Event aggregation Quickstart for Windows Store apps
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Defining the ShoppingCartChangedEvent class
	Notifying subscribers of the ShoppingCartChangedEvent
	Registering to receive notifications of the ShoppingCartChangedEvent

	Bootstrapping an MVVM Windows Store app Quickstart using Prism for the Windows Runtime
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Bootstrapping an MVVM app using the MvvmAppBase class
	Adding app specific startup behavior to the App class
	Bootstrapping without a dependency injection container

	Prism for the Windows Runtime reference (Windows Store business apps using C#, XAML, and Prism)
	You will learn
	Applies to
	Microsoft.Practices.Prism.StoreApps library
	Microsoft.Practices.Prism.PubSubEvents library

